Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning

Electrospinning has attracted tremendous attention in the design and preparation of 1D nanostructured electrode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), due to the versatility and facility. In this review, we present a comprehensive summary of the development of electrospun electrode nanomaterials for LIBs and NIBs, and a brief introduction about electrode materials beyond LIBs and NIBs. By summarizing various electrochemical active materials, this review focuses on the evolution in structures and the constitution of electrospun electrode materials. In detail, a variety of electrospun anode and cathode materials of LIBs and NIBs have been properly discussed, respectively. Finally, the current progress in the electrospun electrode materials is well reviewed and the development direction is also pointed out. We believe that in the nearly future, electrospun electrode materials would be applied in commercial LIBs and promote the advance in NIBs. And we hope that this review could be helpful in the design and fabrication of electrospun hierarchical materials for other advanced energy-storage devices.摘要静电纺丝方法由于具有简便和灵活的特点, 使其在一维锂(钠)离子电池纳米电极材料制备方面受到了广泛的关注. 本综述不仅全面 总结了静电纺丝方法制备锂(钠)离子电池纳米电极材料方面的进展, 并且简要介绍了静电纺丝方法在其他电极材料中的应用. 在总结电化 学活性材料的基础上, 本文将关注的重点放在了电极材料结构以及成分的演变上, 详细介绍了众多静电纺丝方法制备的锂(钠)离子电池纳 米电极材料, 并且针对每个部分进行了合理的讨论. 在结尾部分,简要总结了现有的发展进程, 并且指出了未来的发展方向. 在不远的将来, 静电纺丝方法将会在锂离子电池电极材料的应用上展现其优异的特性, 并且促进钠离子电池电极材料的发展. 本综述希望通过总结以上 内容对未来先进能源材料的设计与制备有所帮助.

[1]  Satoyuki Tatsumi Li 3 V 2 (PO 4 ) 3 /カーボン複合体を用いたハイブリッドキャパシタ正極特性 , 2017 .

[2]  Jung Sang Cho,et al.  Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries. , 2015, ACS nano.

[3]  Y. Qiu,et al.  The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites , 2015 .

[4]  Yan Yu,et al.  Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries. , 2015, Nanoscale.

[5]  Bin Wang,et al.  Rational Design of MoS 2 @ Graphene Nanocables : towards High Performance Electrode Materials for Lithium Ion Batteries , 2014 .

[6]  S. Ramakrishna,et al.  Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. , 2013, Chemical communications.

[7]  K. Lai,et al.  Preparation of carbon nanofibres through electrospinning and thermal treatment , 2009 .

[8]  Yan Yu,et al.  Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. , 2014, Nanoscale.

[9]  Y. Liu,et al.  Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance , 2014 .

[10]  Yu‐Guo Guo,et al.  Ultra‐Uniform SnOx/Carbon Nanohybrids toward Advanced Lithium‐Ion Battery Anodes , 2014, Advanced materials.

[11]  Hong Soo Choi,et al.  Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery–supercapacitor hybrid system , 2011, Nanotechnology.

[12]  Zaiping Guo,et al.  Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance , 2012 .

[13]  Ji-Won Jung,et al.  Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. , 2014, Nanoscale.

[14]  Lei Wang,et al.  Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells , 2011 .

[15]  Wei Zeng,et al.  Fabrication and Electrochemical Properties of Three-Dimensional Structure of LiCoO2 Fibers , 2008 .

[16]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[17]  Zaiping Guo,et al.  Electrospun P 2-type Na 2 / 3 ( Fe 1 / 2 Mn 1 / 2 ) O 2 hierarchical nano fibers as cathode material for sodium-ion batteries , 2016 .

[18]  Zhan Lin,et al.  Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage. , 2010, Chemistry.

[19]  Robert F. Nelson,et al.  Power requirements for batteries in hybrid electric vehicles , 2000 .

[20]  Kai Cui,et al.  Activation with Li enables facile sodium storage in germanium. , 2014, Nano letters.

[21]  Abdul-Majeed Azad,et al.  Fabrication of yttria-stabilized zirconia nanofibers by electrospinning , 2006 .

[22]  Zongping Shao,et al.  Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers† , 2011 .

[23]  K. Yang,et al.  Preparations of pitch-based CF/ACF webs by electrospinning , 2003 .

[24]  Xiaosheng Tang,et al.  Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[25]  P. Baumgarten,et al.  Electrostatic spinning of acrylic microfibers , 1971 .

[26]  Bin Wang,et al.  Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries , 2014 .

[27]  Zheng Yan,et al.  Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. , 2013, ACS nano.

[28]  Lei Jiang,et al.  Bio-mimic multichannel microtubes by a facile method. , 2007, Journal of the American Chemical Society.

[29]  S. Kundu,et al.  Electrospinning: a fascinating fiber fabrication technique. , 2010, Biotechnology advances.

[30]  Q. Duan,et al.  Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning , 2015 .

[31]  Bing Liu,et al.  In situ encapsulation of germanium clusters in carbon nanofibers: high-performance anodes for lithium-ion batteries. , 2014, ChemSusChem.

[32]  Yan Yu,et al.  A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries , 2015, Advanced science.

[33]  Xifei Li,et al.  Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes , 2015 .

[34]  Zaiping Guo,et al.  Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries , 2015 .

[35]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[36]  Gang Yang,et al.  Bicontinuous Structure of Li₃V₂(PO₄)₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries. , 2015, ACS applied materials & interfaces.

[37]  W. Kim,et al.  Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries , 2010 .

[38]  Yunhui Huang,et al.  Electrospun Conformal Li4Ti5O12/C Fibers for High‐Rate Lithium‐Ion Batteries , 2014 .

[39]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[40]  Yan Yu,et al.  Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries , 2015 .

[41]  M. Whittingham,et al.  Electrospun nano-vanadium pentoxide cathode , 2009 .

[42]  Yunpeng Huang,et al.  Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries. , 2015, Nanoscale.

[43]  Yan‐Bing He,et al.  Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries , 2015 .

[44]  Jong Min Kim,et al.  In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[45]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[46]  Bingan Lu,et al.  Core–Shell Ge@Graphene@TiO2 Nanofibers as a High‐Capacity and Cycle‐Stable Anode for Lithium and Sodium Ion Battery , 2016 .

[47]  Xingcheng Xiao,et al.  Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. , 2013, Nano letters.

[48]  Feng Wu,et al.  A hierarchical carbon fiber/sulfur composite as cathode material for Li–S batteries , 2015 .

[49]  Lifang Jiao,et al.  WS2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries. , 2015, Chemistry.

[50]  Yan Yu,et al.  Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage , 2013 .

[51]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[52]  H. A. Toprakci,et al.  Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries , 2011 .

[53]  M. Khil,et al.  Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process , 2008 .

[54]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties , 1981 .

[55]  Yan Yu,et al.  Superior lithium storage in a 3D macroporous graphene framework/SnO₂ nanocomposite. , 2014, Nanoscale.

[56]  A. Manthiram,et al.  Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. , 2015, Chemical communications.

[57]  Xungai Wang,et al.  Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials , 2011 .

[58]  Gyula J. Vancso,et al.  Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers , 2005 .

[59]  Yan Yu,et al.  High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires , 2015 .

[60]  Liquan Chen,et al.  Lithium storage in carbon-coated SnO2 by conversion reaction , 2013 .

[61]  Xiaochang Qiao,et al.  Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries , 2012 .

[62]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[63]  P. T. Krein,et al.  Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles , 2013, IEEE Transactions on Power Electronics.

[64]  Yan Yu,et al.  A Flexible Porous Carbon Nanofibers‐Selenium Cathode with Superior Electrochemical Performance for Both Li‐Se and Na‐Se Batteries , 2015 .

[65]  Dong Wook Kim,et al.  Electrospun nanofibers with a core–shell structure of silicon nanoparticles and carbon nanotubes in carbon for use as lithium-ion battery anodes , 2014 .

[66]  S. Ramakrishna,et al.  Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries , 2014 .

[67]  Q. Li,et al.  Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries , 2014 .

[68]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[69]  Chaojiang Niu,et al.  Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries , 2014 .

[70]  S. Ramakrishna,et al.  Free-standing electrospun carbon nanofibres—a high performance anode material for lithium-ion batteries , 2012 .

[71]  Yong Jung Kim,et al.  Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries , 2006 .

[72]  Yan Yu,et al.  Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. , 2014, Nanoscale.

[73]  J. Son,et al.  Synthesis mechanism of new morphology LiMnPO4 nanofibers using electrospinning process , 2014, Journal of Electroceramics.

[74]  Mianqi Xue,et al.  Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries , 2010 .

[75]  X. Jiao,et al.  Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. , 2005, The journal of physical chemistry. B.

[76]  Yan Yu,et al.  Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[77]  Bao-jun Yu,et al.  Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries , 2014 .

[78]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[79]  Yi Wang,et al.  Carbon‐Encapsulated Pyrite as Stable and Earth‐Abundant High Energy Cathode Material for Rechargeable Lithium Batteries , 2014, Advanced materials.

[80]  Xin-bo Zhang,et al.  Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. , 2012, Chemistry.

[81]  Y. Mai,et al.  Exceptional electrochemical performance of porous TiO2–carbon nanofibers for lithium ion battery anodes , 2014 .

[82]  H. Fong,et al.  Preparation and characterization of electrospun SiO2 nanofibers. , 2008, Journal of nanoscience and nanotechnology.

[83]  Lei Jiang,et al.  Fabrication of Zeolite Hollow Fibers by Coaxial Electrospinning , 2008 .

[84]  Yuyan Shao,et al.  Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage , 2014, Advanced materials.

[85]  Bruno Scrosati,et al.  Challenge of portable power , 1995, Nature.

[86]  M. Naraghi,et al.  Strong carbon nanofibers from electrospun polyacrylonitrile , 2011 .

[87]  Yan Yu,et al.  “Nano‐Pearl‐String” TiNb2O7 as Anodes for Rechargeable Lithium Batteries , 2013 .

[88]  Yong Lak Joo,et al.  Silica nanofibers from electrospinning/sol-gel process , 2003 .

[89]  Yu‐Guo Guo,et al.  Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. , 2013, Small.

[90]  Yunhui Huang,et al.  Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage , 2014 .

[91]  S. Shivkumar,et al.  Effect of molecular weight on fibrous PVA produced by electrospinning , 2004 .

[92]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[93]  H. Pan,et al.  Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries , 2014 .

[94]  Chengyang Wang,et al.  Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries , 2014 .

[95]  Haitao Huang,et al.  Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[96]  Ji-Won Jung,et al.  Single layers of WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries. , 2015, Nanoscale.

[97]  A. J. Bhattacharyya,et al.  Electrospun SnSb Crystalline Nanoparticles inside Porous Carbon Fibers as a High Stability and Rate Capability Anode for Rechargeable Batteries. , 2015, ChemPlusChem.

[98]  S. Ramakrishna,et al.  Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries. , 2013, ACS applied materials & interfaces.

[99]  G. Lei,et al.  Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[100]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[101]  Benedikt Battke,et al.  Use cases for stationary battery technologies: A review of the literature and existing projects , 2016 .

[102]  Yan Yu,et al.  Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. , 2014, Nanoscale.

[103]  S. Dou,et al.  Electrospun P2-type Na(2/3)(Fe(1/2)Mn(1/2))O2 hierarchical nanofibers as cathode material for sodium-ion batteries. , 2014, ACS applied materials & interfaces.

[104]  M. Srinivasan,et al.  1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries , 2012 .

[105]  Yong‐Mook Kang,et al.  Structurally and electronically designed TiO₂Nx nanofibers for lithium rechargeable batteries. , 2013, ACS applied materials & interfaces.

[106]  S. Dou,et al.  One-dimensional nanostructured design of Li1+x(Mn1/3Ni1/3Fe1/3)O2 as a dual cathode for lithium-ion and sodium-ion batteries , 2015 .

[107]  Xiulin Fan,et al.  Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. , 2016, ACS nano.

[108]  Jianli Cheng,et al.  Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries , 2012 .

[109]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[110]  Feiyu Kang,et al.  Carbon Nanofibers Prepared via Electrospinning , 2012, Advanced materials.

[111]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[112]  Sang H. Yoo,et al.  A general approach to fabricate free-standing metal sulfide@carbon nanofiber networks as lithium ion battery anodes. , 2016, Chemical communications.

[113]  Ting Yang,et al.  Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[114]  Yan Yu,et al.  N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties , 2014 .

[115]  Haoshen Zhou,et al.  Electrospinning Synthesis of Wire-Structured LiCoO2 for Electrode Materials of High-Power Li-Ion Batteries , 2012 .

[116]  Xifei Li,et al.  PVP-derived carbon nanofibers harvesting enhanced anode performance for lithium ion batteries , 2016 .

[117]  Ji-Won Jung,et al.  Graphene wrapping as a protective clamping layer anchored to carbon nanofibers encapsulating Si nanoparticles for a Li-ion battery anode. , 2014, Nanoscale.

[118]  F. Kang,et al.  Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials , 2014 .

[119]  John B Goodenough,et al.  Evolution of strategies for modern rechargeable batteries. , 2013, Accounts of chemical research.

[120]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[121]  F. Kang,et al.  Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries , 2013 .

[122]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[123]  Fangfang Liu,et al.  LiCoO2–MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties , 2007 .

[124]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[125]  Ya‐Xia Yin,et al.  An Advanced Selenium—Carbon Cathode for Rechargeable Lithium—Selenium Batteries. , 2013 .

[126]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[127]  Jun Liu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[128]  Yan Yu,et al.  Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. , 2011, Angewandte Chemie.

[129]  Yan Yu,et al.  Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers , 2014 .

[130]  Xiaobin Zhong,et al.  S–TiO2 composite cathode materials for lithium/sulfur batteries , 2015 .

[131]  Yiquan Wu,et al.  Electrospinning materials for energy-related applications and devices , 2011 .

[132]  G. Guo,et al.  Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries. , 2015, Angewandte Chemie.

[133]  Xu Li,et al.  Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. , 2012, Nanoscale.

[134]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[135]  Meltem Yanilmaz,et al.  Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries , 2014 .

[136]  Zongping Shao,et al.  A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage , 2014 .

[137]  Yang Zhao,et al.  Electrospun SnO2–ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries , 2015 .

[138]  S. Ramakrishna,et al.  A review on electrospinning design and nanofibre assemblies , 2006, Nanotechnology.

[139]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[140]  Chunsheng Wang,et al.  3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li‐Ion Batteries , 2015 .

[141]  D. J. Lee,et al.  Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. , 2013, ACS applied materials & interfaces.

[142]  Quan-hong Yang,et al.  A novel SnS2@graphene nanocable network for high-performance lithium storage , 2014 .

[143]  Jian Xu,et al.  Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O , 2010 .

[144]  Bin Chen,et al.  A novel method for making CuO superfine fibres via an electrospinning technique , 2003 .

[145]  X. Lou,et al.  Pie-like electrode design for high-energy density lithium–sulfur batteries , 2015, Nature Communications.

[146]  Jaephil Cho,et al.  Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. , 2013, Angewandte Chemie.

[147]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[148]  Daehwan Cho,et al.  Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application , 2014 .

[149]  F. Du,et al.  Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries. , 2015, Nanoscale.

[150]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[151]  Y. Mai,et al.  In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. , 2012, Nanoscale.

[152]  Y. Gotoh,et al.  Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers , 2011 .

[153]  Ozkan Yildiz,et al.  Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. , 2015, ACS applied materials & interfaces.

[154]  M. Alcoutlabi,et al.  α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[155]  Haiyan Wang,et al.  Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries , 2014 .

[156]  Bin Liu,et al.  Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries , 2014, Scientific Reports.

[157]  Xin-bo Zhang,et al.  Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance , 2015 .

[158]  Yoyo Hinuma,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[159]  Taihong Wang,et al.  CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. , 2013, Nanoscale.

[160]  Lin Gu,et al.  Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. , 2015, Small.

[161]  S. Ramakrishna,et al.  Unveiling TiNb2 O7 as an insertion anode for lithium ion capacitors with high energy and power density. , 2014, ChemSusChem.

[162]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1995 .

[163]  M. Alcoutlabi,et al.  Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries , 2011 .

[164]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[165]  Xin-bo Zhang,et al.  Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries , 2015, Nano Research.

[166]  Darrell H. Reneker,et al.  Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers , 2001 .

[167]  H. Duan,et al.  Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries , 2014 .

[168]  B. Korgel,et al.  Solution-grown germanium nanowire anodes for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[169]  Soo Min Hwang,et al.  A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries , 2014 .

[170]  D. Moran,et al.  Conductive Core–Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering , 2009, Advanced functional materials.

[171]  Yan Yu,et al.  Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. , 2014, ACS nano.

[172]  Chusheng Chen,et al.  A novel carbon–silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries , 2010 .

[173]  Deborah J. Jones,et al.  Electrospinning: designed architectures for energy conversion and storage devices , 2011 .

[174]  Guofeng Xu,et al.  Fabrication and electrochemical characteristics of electrospun LiMn2O4 nanofiber cathode for Li-ion batteries , 2014 .

[175]  Kyu-Nam Jung,et al.  High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries , 2013 .

[176]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[177]  Y. Dzenis,et al.  Asymptotic decay of radius of a weakly conductive viscous jet , 1998 .

[178]  Yunlong Zhao,et al.  Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. , 2010, Nano letters.

[179]  Liwen Ji,et al.  Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries , 2010 .

[180]  Li Min Zhou,et al.  Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries , 2012 .

[181]  Qing Zhang,et al.  Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material , 2013 .

[182]  J. Kikkawa,et al.  Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties. , 2014, Chemistry.

[183]  Weihan Li,et al.  Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode. , 2014, Nanoscale.

[184]  Y. Kim,et al.  Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. , 2007, Small.

[185]  X. Qin,et al.  Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution , 2007 .

[186]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[187]  Yan Yu,et al.  3D V₆O₁₃ nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. , 2015, Nano letters.

[188]  S. Ramakrishna,et al.  Electrospun NiO nanofibers as high performance anode material for Li-ion batteries , 2013 .

[189]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[190]  Dawei Liu,et al.  Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation , 2010 .

[191]  J. Goodenough,et al.  Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium–sulfur batteries , 2014 .

[192]  U. Paik,et al.  Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNy layer as an anode material for high power Li-ion batteries , 2013 .

[193]  Jiaqiang Huang,et al.  Co3O4/porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries , 2014 .

[194]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[195]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[196]  John Zeleny,et al.  The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces , 1914 .

[197]  Yeqian Ge,et al.  Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries , 2015 .

[198]  Lin Xu,et al.  General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis , 2015, Nature Communications.

[199]  Younan Xia,et al.  Highly porous fibers by electrospinning into a cryogenic liquid. , 2006, Journal of the American Chemical Society.

[200]  L. Nazar,et al.  Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries , 2011 .

[201]  Yan Yu,et al.  Self‐Supported Nanotube Arrays of Sulfur‐Doped TiO2 Enabling Ultrastable and Robust Sodium Storage , 2016, Advanced materials.

[202]  Kai Huang,et al.  Strategy to Synthesize Fe3O4/C Nanotubes as Anode Material for Advanced Lithium-Ion Batteries , 2014 .

[203]  Darrell H. Reneker,et al.  A model of steady state jet in the electrospinning process , 2000 .

[204]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[205]  Y. Mai,et al.  Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials , 2014 .

[206]  J. Santiago-Avilés,et al.  Conductivity measurement of electrospun PAN-based carbon nanofiber , 2002 .

[207]  K. An,et al.  Enhancement of conductivity by diameter control of polyimide-based electrospun carbon nanofibers. , 2007, The journal of physical chemistry. B.

[208]  C. Kim,et al.  Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning , 2003 .

[209]  Kepeng Song,et al.  Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. , 2014, Nano letters.

[210]  Feng Wu,et al.  Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries , 2015 .

[211]  Michael P Brenner,et al.  Controlling the fiber diameter during electrospinning. , 2003, Physical review letters.

[212]  Yan Yu,et al.  Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries , 2015 .

[213]  V. Aravindan,et al.  Improved elevated temperature performance of Al-intercalated V(2)O(5) electrospun nanofibers for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[214]  W. Shi,et al.  Fe3O4/carbon composites obtained by electrospinning as an anode material with high rate capability for lithium ion batteries , 2014 .

[215]  Jianwen Yang,et al.  Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery , 2013 .

[216]  Yan Yu,et al.  Single‐Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage. , 2014 .

[217]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[218]  H. A. Toprakci,et al.  Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[219]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[220]  Jaephil Cho,et al.  High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries , 2011 .

[221]  B. A. Rosen,et al.  Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction , 2013, Nature Communications.

[222]  F. Kang,et al.  Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst , 2014 .

[223]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[224]  Luming Li,et al.  Continuous aligned polymer fibers produced by a modified electrospinning method , 2006 .

[225]  S. Ramakrishna,et al.  Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. , 2013, Nanoscale.

[226]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[227]  A. Barrero,et al.  A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. , 2003, Journal of the American Chemical Society.

[228]  Yan Yu,et al.  Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries , 2008 .

[229]  W. Park,et al.  The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers , 2004 .

[230]  S. Ramakrishna,et al.  High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode , 2012 .

[231]  Zhan Lin,et al.  Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material , 2009 .

[232]  W. Jaegermann,et al.  LiFePO4 – 3D carbon nanofiber composites as cathode materials for Li-ions batteries , 2012 .

[233]  Xiangwu Zhang,et al.  Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries , 2009, Nanotechnology.

[234]  Yi Cui,et al.  Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface , 2014, Nature Communications.

[235]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[236]  Yan Yu,et al.  Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries , 2014 .

[237]  M. Morris,et al.  Preparation and morphology of niobium oxide fibres by electrospinning , 2003 .

[238]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[239]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[240]  Yan Yu,et al.  Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites. , 2013, Nanoscale.

[241]  Zongping Shao,et al.  A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage , 2013 .

[242]  Haoshen Zhou,et al.  Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. , 2010, ACS applied materials & interfaces.

[243]  Yan Yu,et al.  Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries , 2015, Scientific Reports.

[244]  C. Doh,et al.  Cathodic performance of V2O5 nanowires and reduced graphene oxide composites for lithium ion batteries , 2014 .

[245]  Guozhong Cao,et al.  Nanomaterials for energy conversion and storage. , 2013, Chemical Society reviews.

[246]  Tianxi Liu,et al.  Flexible Electrospun Carbon Nanofiber@NiS Core/Sheath Hybrid Membranes as Binder‐Free Anodes for Highly Reversible Lithium Storage , 2016 .

[247]  Yiu-Wing Mai,et al.  Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles , 2012 .

[248]  H. Duan,et al.  Electrospinning directly synthesized metal nanoparticles decorated on both sidewalls of TiO2 nanotubes and their applications. , 2013, Nanoscale.

[249]  T. A. Hatton,et al.  Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber , 2011 .

[250]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[251]  J. J. Murray,et al.  Electrochemical Intercalation of Lithium into Graphite , 1993 .

[252]  Itaru Honma,et al.  Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. , 2009, Nano letters.