Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.

[1]  M. Ramos-González,et al.  Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and c-di-GMP Signaling in Pseudomonas putida , 2022, Applied and environmental microbiology.

[2]  G. Wang,et al.  Nutrient starvation intensifies chlorine disinfection-stressed biofilm formation. , 2022, Chemosphere.

[3]  Cara H. Haney,et al.  Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and c-di-GMP Synthesis in Pseudomonas aeruginosa , 2021, Journal of bacteriology.

[4]  D. McDougald,et al.  Carbon starvation of Pseudomonas aeruginosa biofilms selects for dispersal insensitive mutants , 2021, BMC Microbiology.

[5]  S. Santoro,et al.  The Small RNA ErsA Impacts the Anaerobic Metabolism of Pseudomonas aeruginosa Through Post-Transcriptional Modulation of the Master Regulator Anr , 2021, Frontiers in Microbiology.

[6]  Kermit K. Murray,et al.  Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer , 2021, bioRxiv.

[7]  A. Panda,et al.  Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens , 2020, Frontiers in Microbiology.

[8]  M. Ramos-González,et al.  Arginine as an environmental and metabolic cue for cyclic diguanylate signalling and biofilm formation in Pseudomonas putida , 2020, Scientific Reports.

[9]  G. O’Toole,et al.  Pseudomonas aeruginosa Uses c-di-GMP Phosphodiesterases RmcA and MorA To Regulate Biofilm Maintenance , 2020, mBio.

[10]  H. Steenackers,et al.  Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses , 2020, BMC microbiology.

[11]  M. von Kleist,et al.  Local c-di-GMP Signaling in the Control of Synthesis of the E. coli Biofilm Exopolysaccharide pEtN-Cellulose , 2020, Journal of molecular biology.

[12]  J. Barton,et al.  Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms , 2019, Cell.

[13]  Agustín M. Pardo,et al.  Core regulon of the global anaerobic regulator Anr targets central metabolism functions in Pseudomonas species , 2019, Scientific Reports.

[14]  Wei Min,et al.  Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms , 2019, Nature Communications.

[15]  Xin Xu,et al.  Novel Approaches to the Control of Oral Microbial Biofilms , 2018, BioMed research international.

[16]  M. Haque,et al.  Nitric oxide synthase enzymology in the 20 years after the Nobel Prize , 2018, British journal of pharmacology.

[17]  A. Paiardini,et al.  A novel bacterial l‐arginine sensor controlling c‐di‐GMP levels in Pseudomonas aeruginosa , 2018, Proteins.

[18]  A. Arcovito,et al.  Insights into the GTP‐dependent allosteric control of c‐di‐GMP hydrolysis from the crystal structure of PA0575 protein from Pseudomonas aeruginosa , 2018, The FEBS journal.

[19]  V. de Lorenzo,et al.  Dynamics of Pseudomonas putida biofilms in an upscale experimental framework , 2018, Journal of Industrial Microbiology & Biotechnology.

[20]  K. Mansouri,et al.  Arginine: Challenges and opportunities of this two-faced molecule in cancer therapy. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[21]  D. Richardson,et al.  Transcriptional and environmental control of bacterial denitrification and N2O emissions , 2018, FEMS microbiology letters.

[22]  F. Cutruzzolà,et al.  Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms , 2018, FEMS microbiology letters.

[23]  F. Govantes,et al.  The stringent response promotes biofilm dispersal in Pseudomonas putida , 2017, Scientific Reports.

[24]  C. Sibley,et al.  Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture , 2017, Molecular microbiology.

[25]  Jaclyn N. Taroni,et al.  A Multimodal Strategy Used by a Large c-di-GMP Network , 2017, bioRxiv.

[26]  M. Crouzet,et al.  Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation , 2017, PloS one.

[27]  R. Stewart,et al.  Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP , 2017, Proceedings of the National Academy of Sciences.

[28]  J. G. Estrada,et al.  Physiological importance of polyamines , 2017, Zygote.

[29]  S. d'Auria,et al.  Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein. , 2017, Analytical biochemistry.

[30]  W. Xie,et al.  Structural studies of the periplasmic portion of the diguanylate cyclase CdgH from Vibrio cholerae , 2017, Scientific Reports.

[31]  W. Shi,et al.  Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation , 2017, Journal of dental research.

[32]  K. Turner,et al.  Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas aeruginosa in Burn Wound Infections , 2017, mBio.

[33]  U. Jenal,et al.  Cyclic di-GMP: second messenger extraordinaire , 2017, Nature Reviews Microbiology.

[34]  Jeffrey Hill,et al.  Pseudomonas aeruginosa develops Ciprofloxacin resistance from low to high level with distinctive proteome changes. , 2017, Journal of proteomics.

[35]  S. Morris Arginine Metabolism Revisited. , 2016, The Journal of nutrition.

[36]  A. Barbul,et al.  Arginine—Dual roles as an onconutrient and immunonutrient , 2016, Journal of surgical oncology.

[37]  E. Top,et al.  Plasmid transfer in biofilms: a perspective on limitations and opportunities , 2016, npj Biofilms and Microbiomes.

[38]  T. Krell,et al.  Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. , 2016, Environmental microbiology.

[39]  Michael Meyer-Hermann,et al.  Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms , 2016, Scientific Reports.

[40]  S. Rice,et al.  Biofilms: an emergent form of bacterial life , 2016, Nature Reviews Microbiology.

[41]  M. Ramos-González,et al.  Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440 , 2016, Front. Microbiol..

[42]  C. B. Magalhães,et al.  Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. , 2016, Microbial pathogenesis.

[43]  D. Chakravortty,et al.  Dual role of arginine metabolism in establishing pathogenesis. , 2016, Current opinion in microbiology.

[44]  M. Doble,et al.  Bacterial resistance in biofilm-associated bacteria. , 2015, Future microbiology.

[45]  U. Römling Small molecules with big effects: Cyclic di-GMP–mediated stimulation of cellulose production by the amino acid ʟ-arginine , 2015, Science Signaling.

[46]  Bridget R. Kulasekara,et al.  A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine–sensing pathway , 2015, Science Signaling.

[47]  G. O’Toole,et al.  c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review. , 2015, Microbiology spectrum.

[48]  J. Gooding,et al.  Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation , 2015, Scientific Reports.

[49]  S. Lee,et al.  Metabolic engineering of microorganisms for the production of L-arginine and its derivatives , 2014, Microbial Cell Factories.

[50]  D. Newman,et al.  Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton‐motive force , 2014, Molecular microbiology.

[51]  J. Goldberg,et al.  From the Environment to the Host: Re-Wiring of the Transcriptome of Pseudomonas aeruginosa from 22°C to 37°C , 2014, PloS one.

[52]  M. Ramos-González,et al.  Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF , 2014, Journal of bacteriology.

[53]  Knut Drescher,et al.  A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation , 2013, Proceedings of the National Academy of Sciences.

[54]  R. Kolter,et al.  Calcium Causes Multimerization of the Large Adhesin LapF and Modulates Biofilm Formation by Pseudomonas putida , 2012, Journal of bacteriology.

[55]  A. Arcovito,et al.  Unusual heme binding properties of the dissimilative nitrate respiration regulator, a bacterial nitric oxide sensor. , 2012, Antioxidants & redox signaling.

[56]  R. Geffers,et al.  The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing , 2012, PloS one.

[57]  F. Ratjen,et al.  Nitric oxide and L-arginine deficiency in cystic fibrosis. , 2012, Current pharmaceutical design.

[58]  D. Spring,et al.  2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas aeruginosa , 2011, Journal of bacteriology.

[59]  G. O’Toole,et al.  Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. , 2011, Research in microbiology.

[60]  M. Silby,et al.  Pseudomonas genomes: diverse and adaptable. , 2011, FEMS microbiology reviews.

[61]  L. Halverson,et al.  Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. , 2011, Environmental microbiology.

[62]  F. Cutruzzolà,et al.  The Pseudomonas aeruginosa DNR transcription factor: light and shade of nitric oxide-sensing mechanisms. , 2011, Biochemical Society transactions.

[63]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[64]  B. Crane,et al.  Bacterial nitric oxide synthases. , 2010, Annual review of biochemistry.

[65]  M. Calcutt,et al.  Discovery of an operon that participates in agmatine metabolism and regulates biofilm formation in Pseudomonas aeruginosa , 2010, Molecular microbiology.

[66]  Rainer Fischer,et al.  Genetic determinants of Pseudomonas aeruginosa biofilm establishment. , 2010, Microbiology.

[67]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[68]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[69]  D. Jahn,et al.  Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon. , 2008, Microbiology.

[70]  Bruce A. Stanton,et al.  Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. , 2008, Pulmonary pharmacology & therapeutics.

[71]  M. Whiteley,et al.  Nutritional Cues Control Pseudomonas aeruginosa Multicellular Behavior in Cystic Fibrosis Sputum , 2007, Journal of bacteriology.

[72]  M. Son,et al.  In Vivo Evidence of Pseudomonas aeruginosa Nutrient Acquisition and Pathogenesis in the Lungs of Cystic Fibrosis Patients , 2007, Infection and Immunity.

[73]  H. Zeh,et al.  Arginine and immunity. , 2007, The Journal of nutrition.

[74]  John M Woodley,et al.  Biocatalysis for pharmaceutical intermediates: the future is now. , 2007, Trends in biotechnology.

[75]  R. H. Gross,et al.  Phosphate‐dependent modulation of c‐di‐GMP levels regulates Pseudomonas fluorescens Pf0‐1 biofilm formation by controlling secretion of the adhesin LapA , 2007, Molecular microbiology.

[76]  Jörg Stülke,et al.  Regulatory links between carbon and nitrogen metabolism. , 2006, Current opinion in microbiology.

[77]  Chung-Dar Lu Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains , 2006, Applied Microbiology and Biotechnology.

[78]  M. Hentzer,et al.  Anaerobic Survival of Pseudomonas aeruginosa by Pyruvate Fermentation Requires an Usp-Type Stress Protein , 2006, Journal of bacteriology.

[79]  S. Moncada,et al.  The discovery of nitric oxide and its role in vascular biology , 2006, British journal of pharmacology.

[80]  S. Molin,et al.  Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. , 2005, Environmental microbiology.

[81]  A. Prince,et al.  Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. , 2005, American journal of respiratory and critical care medicine.

[82]  J. Stechmiller,et al.  Arginine supplementation and wound healing. , 2005, Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition.

[83]  L. Zeef,et al.  Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm , 2004, Journal of bacteriology.

[84]  S. Morris Enzymes of arginine metabolism. , 2004, The Journal of nutrition.

[85]  J. Buer,et al.  Long-Term Anaerobic Survival of the Opportunistic Pathogen Pseudomonas aeruginosa via Pyruvate Fermentation , 2004, Journal of bacteriology.

[86]  Wei Li,et al.  Transcriptome Analysis of the ArgR Regulon in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[87]  S. Lory,et al.  Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[89]  D. Haas,et al.  The CbrA–CbrB two‐component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa , 2001, Molecular microbiology.

[90]  G. Wu,et al.  Arginine nutrition and cardiovascular function. , 2000, The Journal of nutrition.

[91]  D. Haas,et al.  The ArgR Regulatory Protein, a Helper to the Anaerobic Regulator ANR during Transcriptional Activation of thearcD Promoter in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[92]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[93]  A. Abdelal,et al.  Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operons , 1997, Journal of bacteriology.

[94]  F. Bringel,et al.  Arginine biosynthesis and regulation in Lactobacillus plantarum: the carA gene and the argCJBDF cluster are divergently transcribed , 1997, Journal of bacteriology.

[95]  D. Haas,et al.  Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa , 1991, Journal of bacteriology.

[96]  N. Glansdorff,et al.  Biosynthesis and metabolism of arginine in bacteria , 1986, Microbiological reviews.

[97]  A. Piérard,et al.  Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway , 1984, Journal of bacteriology.

[98]  V. Stalon,et al.  Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa , 1980, Journal of bacteriology.

[99]  G. Donelli,et al.  Microbial Biofilms , 2014, Methods in Molecular Biology.

[100]  C. Wandrey,et al.  Industrial Biotransformations Second , Completely Revised and Extended Edition , 2013 .

[101]  J. Heesemann,et al.  Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. , 2013, Current topics in microbiology and immunology.

[102]  C. Cooper,et al.  Nitric oxide synthases: structure, function and inhibition. , 2001, The Biochemical journal.