Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation

[1]  Anton J. Enright,et al.  MicroRNA degradation by a conserved target RNA regulates animal behavior , 2018, Nature Structural & Molecular Biology.

[2]  Hong-Yu Shen,et al.  The miR-30 family: Versatile players in breast cancer , 2017, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.

[3]  C. Shin,et al.  Non-canonical targets destabilize microRNAs in human Argonautes , 2017, Nucleic acids research.

[4]  Vikram Agarwal,et al.  Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression , 2016, Molecular cell.

[5]  M. Dinger,et al.  Endogenous microRNA sponges: evidence and controversy , 2016, Nature Reviews Genetics.

[6]  Bruno Amati,et al.  Degradation dynamics of microRNAs revealed by a novel pulse-chase approach , 2016, Genome research.

[7]  S. Pfeffer,et al.  Identification of factors involved in target RNA-directed microRNA degradation , 2016, Nucleic acids research.

[8]  Charles M. Rice,et al.  miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity , 2015, Nature Communications.

[9]  Mark B Gerstein,et al.  Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. , 2015, Molecular cell.

[10]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[11]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[12]  Michael B. Stadler,et al.  Potent degradation of neuronal miRNAs induced by highly complementary targets , 2015, EMBO reports.

[13]  Athanasios Fevgas,et al.  DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions , 2014, Nucleic Acids Res..

[14]  M. Zavolan,et al.  Identification and consequences of miRNA–target interactions — beyond repression of gene expression , 2014, Nature Reviews Genetics.

[15]  Heiko Muller,et al.  IsomiRage: From Functional Classification to Differential Expression of miRNA Isoforms , 2014, Front. Bioeng. Biotechnol..

[16]  Peter Krusche,et al.  Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle , 2014, Proceedings of the National Academy of Sciences.

[17]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[18]  Phillip A Sharp,et al.  Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. , 2014, Molecular cell.

[19]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[20]  I. MacRae,et al.  Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. , 2013, Molecular cell.

[21]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[22]  H. Grosshans,et al.  MicroRNA turnover: when, how, and why. , 2012, Trends in biochemical sciences.

[23]  S. Pfeffer,et al.  Degradation of Cellular miR-27 by a Novel, Highly Abundant Viral Transcript Is Important for Efficient Virus Replication In Vivo , 2012, PLoS pathogens.

[24]  D. Bartel,et al.  MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. , 2011, Molecular cell.

[25]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[26]  N. Friedman,et al.  Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells , 2011, Nature Biotechnology.

[27]  Ravi Sachidanandam,et al.  Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells , 2011, Current Biology.

[28]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[29]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[30]  J. Steitz,et al.  Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA , 2010, Science.

[31]  Michael B. Stadler,et al.  Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs , 2010, Cell.

[32]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[33]  Jincheng Li,et al.  miR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway , 2010, PLoS genetics.

[34]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[35]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[36]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[37]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[38]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[39]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[40]  Luigi Naldini,et al.  Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state , 2007, Nature Biotechnology.

[41]  D. Botstein,et al.  The transcriptional program in the response of human fibroblasts to serum. , 1999, Science.

[42]  Heisch Rb . . . and Why , 1963 .