RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei

[1]  M. Schmoll,et al.  Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture , 2022, Frontiers in Fungal Biology.

[2]  A. Mach-Aigner,et al.  An overview on current molecular tools for heterologous gene expression in Trichoderma , 2021, Fungal Biology and Biotechnology.

[3]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[4]  Hung-Wen Li,et al.  Trichoderma reesei Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences , 2021, Proceedings of the National Academy of Sciences.

[5]  K. Chung,et al.  Conformational switch that induces GDP release from Gi. , 2021, Journal of structural biology.

[6]  Jinkui Yang,et al.  Functional analysis of seven regulators of G protein signaling (RGSs) in the nematode-trapping fungus Arthrobotrys oligospora , 2021, Virulence.

[7]  M. Schmoll,et al.  The G-protein Coupled Receptor GPR8 Regulates Secondary Metabolism in Trichoderma reesei , 2020, Frontiers in Bioengineering and Biotechnology.

[8]  Jae-Hyuk Yu,et al.  Heterotrimeric G-Protein Signalers and RGSs in Aspergillus fumigatus , 2020, Pathogens.

[9]  Matthias Misslinger,et al.  Fungal iron homeostasis with a focus on Aspergillus fumigatus. , 2020, Biochimica et biophysica acta. Molecular cell research.

[10]  M. Brunner,et al.  Phosphorylation Timers in the Neurospora crassa Circadian Clock. , 2020, Journal of molecular biology.

[11]  D. Roman,et al.  Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials , 2019, The Journal of Biological Chemistry.

[12]  M. Schmoll,et al.  The role of PKAc1 in gene regulation and trichodimerol production in Trichoderma reesei , 2019, Fungal Biology and Biotechnology.

[13]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[14]  Kristin E. Burnum-Johnson,et al.  Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa , 2019, bioRxiv.

[15]  B. Kluger,et al.  YPR2 is a regulator of light modulated carbon and secondary metabolism in Trichoderma reesei , 2019, BMC Genomics.

[16]  Y. Choi,et al.  RgsD negatively controls development, toxigenesis, stress response, and virulence in Aspergillus fumigatus , 2019, Scientific Reports.

[17]  M. Schmoll,et al.  Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei , 2018, Fungal Biology and Biotechnology.

[18]  M. Schmoll Regulation of plant cell wall degradation by light in Trichoderma , 2018, Fungal Biology and Biotechnology.

[19]  Joseph G Ibrahim,et al.  Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences , 2018, bioRxiv.

[20]  A. Salamov,et al.  Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts , 2018, PLoS genetics.

[21]  M. Schmoll,et al.  Abundance of Secreted Proteins of Trichoderma reesei Is Regulated by Light of Different Intensities , 2017, Front. Microbiol..

[22]  M. Sulyok,et al.  SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in Trichoderma reesei , 2017, Molecular microbiology.

[23]  Jae-Hyuk Yu,et al.  Characteristics of a Regulator of G-Protein Signaling (RGS) rgsC in Aspergillus fumigatus , 2017, Front. Microbiol..

[24]  A. Driessen,et al.  In Vivo Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei , 2017, Front. Microbiol..

[25]  M. Schmoll Light, stress, sex and carbon - The photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. , 2017, Fungal biology.

[26]  M. Sulyok,et al.  A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei , 2017, PloS one.

[27]  Chien-Hao Huang,et al.  Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters , 2017, Biotechnology for Biofuels.

[28]  M. Schmoll,et al.  Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing , 2017, mSphere.

[29]  Y. Tsuji,et al.  Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. , 2016, Trends in molecular medicine.

[30]  R. Dey,et al.  Regulation, Signaling, and Physiological Functions of G-Proteins. , 2016, Journal of molecular biology.

[31]  E. Srebotnik,et al.  Identification of the Main Regulator Responsible for Synthesis of the Typical Yellow Pigment Produced by Trichoderma reesei , 2016, Applied and Environmental Microbiology.

[32]  B. Seiboth,et al.  Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei , 2016, Microbial Cell Factories.

[33]  Irina S Druzhinina,et al.  A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness , 2016, Biotechnology for Biofuels.

[34]  S. Baker,et al.  The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species , 2016, Microbiology and Molecular Reviews.

[35]  Susumu Y. Imanishi,et al.  Quantitative Site-Specific Phosphoproteomics of Trichoderma reesei Signaling Pathways upon Induction of Hydrolytic Enzyme Production. , 2016, Journal of proteome research.

[36]  Sean J. Humphrey,et al.  Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation , 2015, Trends in Endocrinology & Metabolism.

[37]  P. Weglenski,et al.  KAEA (SUDPRO), a member of the ubiquitous KEOPS/EKC protein complex, regulates the arginine catabolic pathway and the expression of several other genes in Aspergillus nidulans. , 2015, Gene.

[38]  Z. Ryoo,et al.  RGS19 converts iron deprivation stress into a growth-inhibitory signal. , 2015, Biochemical and biophysical research communications.

[39]  P. Ballario,et al.  Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa , 2015, International journal of molecular sciences.

[40]  M. Schmoll,et al.  Mating type‐dependent partner sensing as mediated by VEL1 in T richoderma reesei , 2015, Molecular microbiology.

[41]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[42]  M. Schmoll,et al.  Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei , 2014, BMC Genomics.

[43]  M. Schmoll,et al.  Targets of light signalling in Trichoderma reesei , 2013, BMC Genomics.

[44]  B. Jastrzebska GPCR: G protein complexes—the fundamental signaling assembly , 2013, Amino Acids.

[45]  Jamie H. D. Cate,et al.  Plant cell wall deconstruction by ascomycete fungi. , 2013, Annual review of microbiology.

[46]  Jinkui Yang,et al.  Characterizations and functions of regulator of G protein signaling (RGS) in fungi , 2013, Applied Microbiology and Biotechnology.

[47]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[48]  M. Schmoll,et al.  The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma reesei) , 2012, Fungal genetics and biology : FG & B.

[49]  M. Schmoll,et al.  ENVOY Is a Major Determinant in Regulation of Sexual Development in Hypocrea jecorina (Trichoderma reesei) , 2012, Eukaryotic Cell.

[50]  M. Schmoll,et al.  Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei , 2012, Applied and Environmental Microbiology.

[51]  S. Baker,et al.  A versatile toolkit for high throughput functional genomics with Trichoderma reesei , 2012, Biotechnology for Biofuels.

[52]  M. Schmoll,et al.  The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei , 2011, BMC Genomics.

[53]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[54]  M. Schmoll,et al.  New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina) , 2011, Fungal genetics and biology : FG & B.

[55]  Monika Schmoll,et al.  Trichoderma in the light of day – Physiology and development , 2010, Fungal genetics and biology : FG & B.

[56]  Douglas M. Yau,et al.  Non-canonical functions of RGS proteins. , 2010, Cellular signalling.

[57]  M. Schmoll,et al.  A novel class of peptide pheromone precursors in ascomycetous fungi , 2010, Molecular microbiology.

[58]  Christian Seibel,et al.  Sexual development in the industrial workhorse Trichoderma reesei , 2009, Proceedings of the National Academy of Sciences.

[59]  J. Jacquot,et al.  The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium , 2009, Cellular and Molecular Life Sciences.

[60]  W. Lubitz,et al.  Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe-4S] clusters in photosystem I. , 2009, Biochimica et biophysica acta.

[61]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[62]  C. L. Baker,et al.  A Role for Casein Kinase 2 in the Mechanism Underlying Circadian Temperature Compensation , 2009, Cell.

[63]  M. Schmoll,et al.  The G-Alpha Protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) Regulates Cellulase Gene Expression in the Presence of Light , 2009, Eukaryotic Cell.

[64]  M. Schmoll The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina , 2008, BMC Genomics.

[65]  Hubertus Haas,et al.  Siderophores in fungal physiology and virulence. , 2008, Annual review of phytopathology.

[66]  H. Nakayashiki,et al.  Systematic functional analysis of calcium‐signalling proteins in the genome of the rice‐blast fungus, Magnaporthe oryzae, using a high‐throughput RNA‐silencing system , 2008, Molecular microbiology.

[67]  She Chen,et al.  Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. , 2007, Genes & development.

[68]  K. Borkovich,et al.  Heterotrimeric G protein signaling in filamentous fungi. , 2007, Annual review of microbiology.

[69]  Ken Haynes,et al.  Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection , 2007, PLoS pathogens.

[70]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[71]  G. Xie,et al.  How regulators of G protein signaling achieve selective regulation. , 2007, Journal of molecular biology.

[72]  C. Frova Glutathione transferases in the genomics era: new insights and perspectives. , 2006, Biomolecular engineering.

[73]  Jae-Hyuk Yu Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. , 2006, Journal of microbiology.

[74]  M. Schmoll,et al.  Global Carbon Utilization Profiles of Wild-Type, Mutant, and Transformant Strains of Hypocrea jecorina , 2006, Applied and Environmental Microbiology.

[75]  M. Gerstein,et al.  Global analysis of protein phosphorylation in yeast , 2005, Nature.

[76]  M. Schmoll,et al.  Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light , 2005, Eukaryotic Cell.

[77]  R. Allada,et al.  Casein kinase 2, circadian clocks, and the flight from mutagenic light , 2005, Molecular and Cellular Biochemistry.

[78]  G. Macino,et al.  Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC‐1 , 2005, Molecular microbiology.

[79]  Ken Haynes,et al.  Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence , 2004, The Journal of experimental medicine.

[80]  Anita Preininger,et al.  Insights into G protein structure, function, and regulation. , 2003, Endocrine reviews.

[81]  J. Heitman,et al.  Conserved cAMP signaling cascades regulate fungal development and virulence. , 2001, FEMS microbiology reviews.

[82]  J. Heitman,et al.  Signal Transduction Cascades Regulating Fungal Development and Virulence , 2000, Microbiology and Molecular Biology Reviews.

[83]  R. Baird,et al.  Rapid Mini-Preparation of Fungal DNA for PCR , 2000, Journal of Clinical Microbiology.

[84]  O. Yarden,et al.  Serine/threonine protein kinases and phosphatases in filamentious fungi. , 1999, Fungal genetics and biology : FG & B.

[85]  J. Kronstad,et al.  Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways , 1998, Archives of Microbiology.

[86]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[87]  M. Koelle A new family of G-protein regulators - the RGS proteins. , 1997, Current opinion in cell biology.

[88]  K. Blumer,et al.  RGS family members: GTPase-activating proteins for heterotrimeric G-protein α-subunits , 1996, Nature.

[89]  H. Hamm,et al.  Heterotrimeric G proteins. , 1996, Current opinion in cell biology.

[90]  R. Klausner,et al.  A Permease-Oxidase Complex Involved in High-Affinity Iron Uptake in Yeast , 1996, Science.

[91]  Andrey Rzhetsky,et al.  Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference , 1992, Journal of Molecular Evolution.

[92]  J. Visser,et al.  The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain , 1990, Current Genetics.

[93]  安戸 饒 Trichoderma reeseiによるセルラ-ゼ生産 , 1989 .

[94]  M. Schmoll,et al.  Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma. , 2022, Progress in molecular biology and translational science.

[95]  Shelley B Hooks,et al.  Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins. , 2018, Cellular signalling.

[96]  Irina S Druzhinina,et al.  Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. , 2016, Advances in applied microbiology.

[97]  R. Fisher,et al.  Introduction: G Protein-coupled Receptors and RGS Proteins. , 2015, Progress in molecular biology and translational science.

[98]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[99]  S. Halford,et al.  Brenner’s Encyclopedia of Genetics 2nd edition , 2013 .

[100]  Bernard Henrissat,et al.  Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[101]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[102]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[103]  K. Blumer,et al.  RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. , 1996, Nature.

[104]  M. Penttilä,et al.  Genetic and biochemical characterization of the Trichoderma reesei hydrophobin HFBI. , 1996, European journal of biochemistry.

[105]  M. Mandels,et al.  Problems and challenges in the cellulose to cellulase fermentation , 1978 .