Spectral cluster estimates for C1,1 metrics
暂无分享,去创建一个
[1] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[2] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[3] A. Seeger,et al. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates , 1993 .
[4] Michael Taylor,et al. Pseudodifferential Operators and Nonlinear PDE , 1991 .
[5] N. Varopoulos,et al. Hardy-Littlewood theory for semigroups , 1985 .
[6] Elias M. Stein,et al. Regularity properties of Fourier integral operators , 1991 .
[7] Christopher D. Sogge,et al. Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds , 1988 .
[8] Hart F. Smith. A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .
[9] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[10] Daniel Tataru,et al. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, II , 2001 .
[11] Charles Fefferman,et al. Wave packets and fourier integral operators , 1978 .
[12] Y. Meyer,et al. Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .
[13] Hans Lindblad,et al. On Existence and Scattering with Minimal Regularity for Semilinear Wave Equations , 1995 .
[14] Hart F. Smith,et al. On Strichartz and eigenfunction estimates for low regularity metrics , 1994 .