A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.

A lattice relaxation algorithm is developed to solve the Poisson-Nernst-Planck (PNP) equations for ion transport through arbitrary three-dimensional volumes. Calculations of systems characterized by simple parallel plate and cylindrical pore geometries are presented in order to calibrate the accuracy of the method. A study of ion transport through gramicidin A dimer is carried out within this PNP framework. Good agreement with experimental measurements is obtained. Strengths and weaknesses of the PNP approach are discussed.

[1]  M. Karplus,et al.  Ion transport in the gramicidin channel: free energy of the solvated right-handed dimer in a model membrane , 1993 .

[2]  R. Coalson,et al.  Lattice field theory for spherical macroions in solution: Calculation of equilibrium pair correlation functions , 1994 .

[3]  Peter C. Jordan,et al.  Theoretical perspectives on ion-channel electrostatics: continuum and microscopic approaches , 1992, Quarterly Reviews of Biophysics.

[4]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[5]  O. Andersen Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. , 1983, Biophysical journal.

[6]  D. Urry,et al.  Location of monovalent cation binding sites in the gramicidin channel. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Slotboom Iterative scheme for 1- and 2- dimensional d.c.-transistor simulation , 1969 .

[8]  R. Eisenberg,et al.  Constant fields and constant gradients in open ionic channels. , 1992, Biophysical journal.

[9]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[10]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[11]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[12]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[13]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[14]  N. Unwin Acetylcholine receptor channel imaged in the open state , 1995, Nature.

[15]  P. Wolynes,et al.  The theory of ion transport through membrane channels. , 1985, Progress in biophysics and molecular biology.

[16]  Eberhard Von Kitzing,et al.  Integral weak diffusion and diffusion approximations applied to ion transport through biological ion channels , 1995 .

[17]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[18]  D. Urry,et al.  The determination of binding constants of micellar-packaged gramicidin A by 13C-and 23Na-NMR. , 1995, Biochimica et biophysica acta.

[19]  D. Levitt General continuum theory for multiion channel. II. Application to acetylcholine channel. , 1991, Biophysical journal.

[20]  O. Andersen,et al.  Molecular determinants of channel function. , 1992, Physiological reviews.

[21]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[22]  Rob D. Coalson,et al.  Systematic ionic screening theory of macroions , 1992 .

[23]  K. Wiesener Surface Electrochemistry , 1995 .

[24]  Nir Ben-Tal,et al.  Statistical mechanics of a Coulomb gas with finite size particles: A lattice field theory approach , 1995 .

[25]  T L Croxton,et al.  Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations. , 1989, Journal of theoretical biology.

[26]  J. Andrew McCammon,et al.  Solving the finite‐difference non‐linear Poisson–Boltzmann equation , 1992 .

[27]  H. M. Fishman Relaxations, fluctuations and ion transfer across membranes. , 1985, Progress in biophysics and molecular biology.

[28]  Bob Eisenberg Ionic Channels in Biological Membranes: Natural Nanotubes , 1998 .

[29]  R. Eisenberg,et al.  Flux, coupling, and selectivity in ionic channels of one conformation. , 1993, Biophysical journal.

[30]  K. Crowhurst,et al.  Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer. , 1997, Biophysical journal.

[31]  B. Wallace,et al.  Gramicidin channels and pores. , 1990, Annual review of biophysics and biophysical chemistry.

[32]  O. Andersen Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements. , 1983, Biophysical journal.

[33]  B. Hille Ionic channels of excitable membranes , 2001 .

[34]  S. Lin,et al.  Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues. , 1994, Biophysical journal.

[35]  Y. Chernyak A universal steady state I-V relationship for membrane current , 1995, IEEE Transactions on Biomedical Engineering.

[36]  B. Roux,et al.  The binding site of sodium in the gramicidin A channel. , 1999, Novartis Foundation symposium.

[37]  G. Schulz,et al.  Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus. , 1994, Journal of molecular biology.

[38]  D. Levitt General continuum theory for multiion channel. I. Theory. , 1991, Biophysical journal.

[39]  A. Warshel,et al.  Calculations of electrostatic interactions in biological systems and in solutions , 1984, Quarterly Reviews of Biophysics.

[40]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[41]  R. Eisenberg,et al.  Charges, currents, and potentials in ionic channels of one conformation. , 1993, Biophysical journal.

[42]  J. Novak Calcium ion current from an extracellular electrolyte toward a channel opening in an insulating membrane: quantitative model with rotational symmetry , 1997, IEEE Transactions on Biomedical Engineering.

[43]  S. Oiki,et al.  Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue. , 1994, Biophysical journal.

[44]  O. Andersen,et al.  The Heterogeneous Collision Velocity for Hydrated Ions in Aqueous Solutions Is ∼104 cm/s , 1996 .

[45]  C. Venkatachalam,et al.  Theoretical conformational analysis of the Gramicidin a transmembrane channel. I. Helix sense and energetics of head‐to‐head dimerization , 1983 .

[46]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[47]  G. Schulz,et al.  Structure of porin refined at 1.8 A resolution. , 1992, Journal of molecular biology.

[48]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[49]  R Elber,et al.  Sodium in gramicidin: an example of a permion. , 1995, Biophysical journal.

[50]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[51]  O. Andersen,et al.  Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophane, and tyrosine substitutions at positions 1 and 11. , 1984, Biophysical journal.

[52]  B. Cornell,et al.  Solid-state 13C-NMR studies of the effects of sodium ions on the gramicidin A ion channel. , 1990, Biochimica et biophysica acta.

[53]  N. Ben-Tal,et al.  DIELECTRIC CONSTANT EFFECTS ON THE ENERGETICS OF OPPOSITELY CHARGED COLLOIDS : A LATTICE FIELD THEORY STUDY , 1994 .

[54]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[55]  L. Xu,et al.  Permeation through the calcium release channel of cardiac muscle. , 1997, Biophysical journal.

[56]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[57]  P. Brink,et al.  Ion flow in the bath and flux interactions between channels. , 1994, Biophysical journal.

[58]  J. Rasaiah,et al.  MOBILITY AND SOLVATION OF IONS IN CHANNELS , 1996 .