A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrittlement

Abstract We present a gradient-based theoretical framework for predicting hydrogen assisted fracture in elastic-plastic solids. The novelty of the model lies in the combination of: (i) stress-assisted diffusion of solute species, (ii) strain gradient plasticity, and (iii) a hydrogen-sensitive phase field fracture formulation, inspired by first principles calculations. The theoretical model is numerically implemented using a mixed finite element formulation and several boundary value problems are addressed to gain physical insight and showcase model predictions. The results reveal the critical role of plastic strain gradients in rationalising decohesion-based arguments and capturing the transition to brittle fracture observed in hydrogen-rich environments. Large crack tip stresses are predicted, which in turn raise the hydrogen concentration and reduce the fracture energy. The computation of the steady state fracture toughness as a function of the cohesive strength shows that cleavage fracture can be predicted in otherwise ductile metals using sensible values for the material parameters and the hydrogen concentration. In addition, we compute crack growth resistance curves in a wide variety of scenarios and demonstrate that the model can appropriately capture the sensitivity to: the plastic length scales, the fracture length scale, the loading rate and the hydrogen concentration. Model predictions are also compared with fracture experiments on a modern ultra-high strength steel, AerMet100. A promising agreement is observed with experimental measurements of threshold stress intensity factor Kth over a wide range of applied potentials.

[1]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[2]  Norman A. Fleck,et al.  A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier , 2009 .

[3]  R. Kirchheim Solid Solutions of Hydrogen in Complex Materials , 2005 .

[4]  S. Lynch Discussion of some recent literature on hydrogen-embrittlement mechanisms: addressing common misunderstandings , 2019, Corrosion Reviews.

[5]  George Papazafeiropoulos,et al.  Abaqus2Matlab: A suitable tool for finite element post-processing , 2017, Adv. Eng. Softw..

[6]  Hehua Zhu,et al.  Phase field modelling of crack propagation, branching and coalescence in rocks , 2018, Theoretical and Applied Fracture Mechanics.

[7]  A. Evans,et al.  The mechanics and physics of thin film decohesion and its measurement , 1996 .

[8]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[9]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[10]  Peter Gudmundson,et al.  A unified treatment of strain gradient plasticity , 2004 .

[11]  Vinh Phu Nguyen,et al.  A phase-field regularized cohesive zone model for hydrogen assisted cracking , 2020 .

[12]  Marco Paggi,et al.  A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model , 2017 .

[13]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[14]  N. A. Flecka,et al.  A reformulation of strain gradient plasticity , 2001 .

[15]  C. F. Niordson,et al.  Strain gradient plasticity modeling of hydrogen diffusion to the crack tip , 2016, 1711.05616.

[16]  Hirshikesh,et al.  Phase field modelling of crack propagation in functionally graded materials , 2019, Composites Part B: Engineering.

[17]  Jian-Sheng Wang,et al.  FRACTURE BEHAVIOR OF EMBRITTLED F.C.C. METAL BICRYSTALS , 1991 .

[18]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[19]  Emilio Mart'inez-Paneda,et al.  Strain gradient plasticity-based modeling of hydrogen environment assisted cracking , 2016, 1711.06179.

[20]  Lallit Anand,et al.  A one-dimensional theory of strain-gradient plasticity : Formulation, analysis, numerical results , 2005 .

[21]  J. Scully,et al.  Predicting the Effect of Applied Potential on Crack Tip Hydrogen Concentration in Low-Alloy Martensitic Steels , 2008 .

[22]  Richard P. Gangloff,et al.  Measurement and Modeling of Hydrogen Environment–Assisted Cracking of Ultra-High-Strength Steel , 2007 .

[23]  Konstantinos Poulios,et al.  GetFEM , 2020, ACM Trans. Math. Softw..

[24]  E. Mart'inez-Paneda,et al.  Gradient-enhanced statistical analysis of cleavage fracture , 2019, European Journal of Mechanics - A/Solids.

[25]  X. Qian,et al.  Calibration of Weibull parameters using the conventional mechanism-based strain gradient plasticity , 2011 .

[26]  C. F. Niordson,et al.  The role of plastic strain gradients in the crack growth resistance of metals , 2019, Journal of the Mechanics and Physics of Solids.

[27]  Haim Waisman,et al.  A coupled phase field shear band model for ductile–brittle transition in notched plate impacts , 2016 .

[28]  E. Mart'inez-Paneda,et al.  Modeling damage and fracture within strain-gradient plasticity , 2015, 1710.05374.

[29]  A. Raina,et al.  Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory , 2016 .

[30]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[31]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[32]  A. G. Varias,et al.  A theory for cleavage cracking in the presence of plastic flow , 1993 .

[33]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[34]  Emilio Mart'inez-Paneda,et al.  A phase field formulation for hydrogen assisted cracking , 2018, Computer Methods in Applied Mechanics and Engineering.

[35]  L. Anand,et al.  On modeling fracture of ferritic steels due to hydrogen embrittlement , 2019, Journal of the Mechanics and Physics of Solids.

[36]  S. S. Shishvan,et al.  Hydrogen induced fast-fracture , 2020, Journal of the Mechanics and Physics of Solids.

[37]  C. Shih,et al.  Fracture toughness of alumina-niobium interfaces : experiments and analyses , 1992 .

[38]  J. Scully,et al.  Hydrogen trap states in ultrahigh-strength AERMET 100 steel , 2004 .

[39]  Manfred Rühle,et al.  The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals , 1994 .

[40]  Sebastian Toro,et al.  A phase-field model for solute-assisted brittle fracture in elastic-plastic solids , 2017 .

[41]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[42]  C. F. Niordson,et al.  Debonding failure and size effects in micro-reinforced composites , 2010 .

[43]  T. Siegmund,et al.  Stationary and propagating cracks in a strain gradient visco-plastic solid , 2016, International Journal of Fracture.

[44]  R. P. Gangloff,et al.  6.02 – Hydrogen-assisted Cracking , 2003 .

[45]  Stefano Vidoli,et al.  Comparison of Phase-Field Models of Fracture Coupled with Plasticity , 2018 .

[46]  Zhiliang Zhang,et al.  Continuum level simulation of the grain size and misorientation effects on hydrogen embrittlement in nickel , 2016 .

[47]  C. F. Niordson,et al.  Steady-state fracture toughness of elastic-plastic solids: Isotropic versus kinematic hardening , 2018, Engineering Fracture Mechanics.

[48]  V. Deshpande,et al.  Discrete dislocation plasticity analysis of crack-tip fields in polycrystalline materials , 2005 .

[49]  J. Scully,et al.  On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility , 2019, Corrosion Science.

[50]  W. Gerberich Modeling hydrogen induced damage mechanisms in metals , 2012 .

[51]  P. Sofronis,et al.  Chemomechanical effects on the separation of interfaces occurring during fracture with emphasis on the hydrogen-iron and hydrogen-nickel system , 2015 .

[52]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[53]  Pablo J. Sánchez,et al.  A phase-field/gradient damage model for brittle fracture in elastic–plastic solids , 2015 .

[54]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[55]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[56]  M. Ortiza,et al.  A quantum-mechanically informed continuum model of hydrogen embrittlement , 2004 .

[57]  R. McMeeking,et al.  Numerical analysis of hydrogen transport near a blunting crack tip , 1989 .

[58]  E. Mart'inez-Paneda,et al.  Fracture in distortion gradient plasticity , 2020, International Journal of Engineering Science.

[59]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[60]  Albert Turon,et al.  A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials , 2019, Composite Structures.

[61]  I. Scheider,et al.  Simulation of hydrogen assisted stress corrosion cracking using the cohesive model , 2008 .

[62]  O. W. Dillon,et al.  A strain gradient theory of plasticity , 1970 .

[63]  G. R. Irwin,et al.  ONSET OF FAST CRACK PROPAGATION IN HIGH STRENGTH STEEL AND ALUMINUM ALLOYS , 1956 .

[64]  J. Hutchinson,et al.  STEADY-STATE CRACK GROWTH AND WORK OF FRACTURE FOR SOLIDS CHARACTERIZED BY STRAIN GRADIENT PLASTICITY , 1997 .

[65]  Emilio Mart'inez-Paneda,et al.  Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme , 2019, Theoretical and Applied Fracture Mechanics.

[66]  R. M. Cannon,et al.  Fracture properties of interfacially doped Nb-A12O3 bicrystals: I, fracture characteristics , 2002 .

[67]  Shuai Wang,et al.  Hydrogen Embrittlement Understood , 2015, Metallurgical and Materials Transactions A.

[68]  C. F. Niordson,et al.  On fracture in finite strain gradient plasticity , 2016, 1711.01081.

[69]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[70]  O. Løvvik,et al.  Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing , 2015 .

[71]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[72]  Lorenzo Bardella,et al.  On the Finite Element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility , 2016 .

[73]  E. Carter,et al.  First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals , 2004 .

[74]  George Z. Voyiadjis,et al.  Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations , 2019, International Journal of Plasticity.

[75]  W. Curtin,et al.  The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals , 2019, Engineering Fracture Mechanics.

[76]  R. Gangloff,et al.  Gaseous hydrogen embrittlement of materials in energy technologies Volume 1 , 2012 .

[77]  Zhiliang Zhang,et al.  Cohesive zone simulation of grain size and misorientation effects on hydrogen embrittlement in nickel , 2017 .

[78]  C. Moriconi,et al.  Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals , 2014 .

[79]  S. Agnew,et al.  The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity , 2008 .

[80]  A. Cocks,et al.  Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials , 2018, Journal of the Mechanics and Physics of Solids.

[81]  N. Fleck,et al.  Mode I crack tip fields: Strain gradient plasticity theory versus J2 flow theory , 2019, European Journal of Mechanics - A/Solids.

[82]  C. F. Niordson,et al.  A 2D finite element implementation of the Fleck–Willis strain-gradient flow theory , 2013 .

[83]  R. Gangloff,et al.  Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels , 2017, Metallurgical and Materials Transactions A.

[84]  L. De Lorenzis,et al.  Phase-field modeling of fracture in variably saturated porous media , 2018 .

[85]  Bai-Xiang Xu,et al.  Current collector Composite anode Separator Composite cathode Current collector Electrons Lithium atoms Lithium ions Discharge Charge Anode particle Electrolyte Cathode particle , 2015 .

[86]  A. J. Mcevily,et al.  Hydrogen-assisted cracking , 1991 .

[87]  W. Curtin,et al.  Origin of plasticity length-scale effects in fracture. , 2010, Physical review letters.

[88]  J. M. Alegre,et al.  Coupled hydrogen diffusion simulation using a heat transfer analogy , 2016 .

[89]  Gael Guetard,et al.  Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel , 2018, Acta Materialia.

[90]  N. Fleck,et al.  Crack Growth Resistance in Metallic Alloys: The Role of Isotropic Versus Kinematic Hardening , 2018, Journal of Applied Mechanics.

[91]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[92]  S. Mao,et al.  Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion: experiment and theory , 1998 .

[93]  Gerbrand Ceder,et al.  Impurity-induced van der Waals transition during decohesion , 2003 .

[94]  Christian Miehe,et al.  A phase‐field model for chemo‐mechanical induced fracture in lithium‐ion battery electrode particles , 2016 .

[95]  H. W. Liu Stress-Corrosion Cracking and the Interaction Between Crack-Tip Stress Field and Solute Atoms , 1970 .

[96]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[97]  Emilio Mart'inez-Paneda,et al.  A cohesive zone framework for environmentally assisted fatigue , 2017, 1711.09965.