Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

The Korteweg-de Vries Burgers (KdVB)-like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

[1]  K. Javidan,et al.  Ion acoustic solitary waves in high relativistic plasmas with superthermal electrons and thermal positrons , 2012 .

[2]  Samiran Ghosh,et al.  Ion acoustic solitons and double layers in electron–positron–ion plasmas with dust particulates , 2008 .

[3]  Anders Eriksson,et al.  Freja multiprobe observations of electrostatic solitary structures , 1994 .

[4]  Anatoly Spitkovsky,et al.  On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas , 2007, 0706.3126.

[5]  U. N. Ghosh,et al.  Nonplanar Ion Acoustic Solitary Waves in Electron-Positron-Ion Plasma With Warm Ions, and Electron and Positron Following Q-Nonextensive Velocity Distribution , 2013, IEEE Transactions on Plasma Science.

[6]  A. M. Mirza,et al.  Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas , 2013 .

[7]  A. Bains,et al.  Ion acoustic soliton in weakly relativistic magnetized electron–positron–ion plasma , 2009 .

[8]  Scott C. Wilks,et al.  Pair Production by Ultraintense Lasers , 1998 .

[9]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[10]  M. Belić,et al.  Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach , 2015 .

[11]  Asif Shah,et al.  Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions , 2010 .

[12]  K. Javidan,et al.  Effect of high relativistic ions on ion acoustic solitons in electron-ion-positron plasmas with nonthermal electrons and thermal positrons , 2011 .

[13]  C. Tsallis Some comments on Boltzmann-Gibbs statistical mechanics , 1995 .

[14]  S. Mahmood,et al.  Electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar , 2011 .

[15]  R. Lundin,et al.  Plasma energization on auroral field lines as observed by the Viking spacecraft , 1987 .

[16]  A. Rényi On a new axiomatic theory of probability , 1955 .

[17]  K. Javidan,et al.  Energy of ion acoustic solitons in electron-positron-ion plasmas with high relativistic ions , 2011 .

[18]  D. A. Bryant,et al.  Electrons in the boundary layers near the dayside magnetopause , 1991 .

[19]  J. Meyer-ter-Vehn,et al.  Pair and γ-photon production from a thin foil confined by two laser pulses , 2001 .

[20]  R. Taylor,et al.  Formation and Interaction of Ion-Acoustic Solitions , 1970 .

[21]  J. Mohanty,et al.  Relativistic theory of cross‐field transport and diffusion in a plasma , 1996 .

[22]  H. Schamel Stationary solitary, snoidal and sinusoidal ion acoustic waves , 1972 .

[23]  A Maxwellian path to the q-nonextensive velocity distribution function , 1998, cond-mat/0201503.

[24]  L. Stenflo,et al.  Nonlinear coupling between electromagnetic fields in a strongly magnetized electron-positron plasma , 1993 .

[25]  J. Vieira,et al.  Generation of neutral and high-density electron–positron pair plasmas in the laboratory , 2015, Nature Communications.

[26]  R. Bostrom Observations of weak double layers on auroral field lines , 1992 .

[27]  Z. Sheng,et al.  Weakly relativistic one-dimensional laser pulse envelope solitons in a warm plasma , 2002 .

[28]  H. Pakzad Ion acoustic solitary waves in plasma with nonthermal electron and positron , 2009 .

[29]  Asif Shah,et al.  Ion acoustic shock waves in a relativistic electron–positron–ion plasmas , 2009 .

[30]  K. A. Marsh,et al.  Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield , 2015, Nature.

[31]  M. Tribeche,et al.  Nonlinear structures in a nonextensive electron-positron-ion magnetoplasma , 2012 .

[32]  W. Mori,et al.  Positron injection and acceleration on the wake driven by an electron beam in a foil-and-gas plasma. , 2008, Physical review letters.

[33]  M. Hafez,et al.  Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions , 2015 .

[34]  N. S. Saini,et al.  Ion-acoustic solitons in weakly relativistic plasma containing electron positron and ion , 2007 .