Dimensional Expressivity Analysis of Parametric Quantum Circuits

Parametric quantum circuits play a crucial role in the performance of many variational quantum algorithms. To successfully implement such algorithms, one must design efficient quantum circuits that sufficiently approximate the solution space while maintaining a low parameter count and circuit depth. In this paper, develop a method to analyze the dimensional expressivity of parametric quantum circuits. Our technique allows for identifying superfluous parameters in the circuit layout and for obtaining a maximally expressive ansatz with a minimum number of parameters. Using a hybrid quantum-classical approach, we show how to efficiently implement the expressivity analysis using quantum hardware, and we provide a proof of principle demonstration of this procedure on IBM's quantum hardware. We also discuss the effect of symmetries and demonstrate how to incorporate or remove symmetries from the parametrized ansatz.

[1]  Koen Bertels,et al.  Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability , 2020, Quantum Machine Intelligence.

[2]  Luca Dellantonio,et al.  Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer , 2020, PRX Quantum.

[3]  T. Bækkegaard,et al.  Single-qubit rotations in parameterized quantum circuits , 2020, 2005.13548.

[4]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[5]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[6]  K. Jansen,et al.  Zeta-regularized vacuum expectation values fromquantum computing simulations , 2019, 1912.01276.

[7]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[8]  R. Pooser,et al.  Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms , 2019, npj Quantum Information.

[9]  Michael R. Geller,et al.  Sampling and Scrambling on a Chain of Superconducting Qubits , 2017, Physical Review Applied.

[10]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[11]  N. J. S. Loft,et al.  Reducing the Amount of Single‐Qubit Rotations in VQE and Related Algorithms , 2020, Advanced Quantum Technologies.

[12]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[14]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[15]  Bryan T. Gard,et al.  Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise , 2020, Physical Review Applied.

[16]  Joseph Fitzsimons,et al.  Compiling basic linear algebra subroutines for quantum computers , 2019, Quantum Machine Intelligence.

[17]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[18]  T. Hartung,et al.  Zeta-regularized vacuum expectation values , 2018, Journal of Mathematical Physics.

[19]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[20]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[21]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  Luca Dellantonio,et al.  A resource efficient approach for quantum and classical simulations of gauge theories in particle physics , 2021, Quantum.

[24]  Marc Bataille Quantum circuits of CNOT gates , 2020 .

[25]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[26]  W. Marsden I and J , 2012 .

[27]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[28]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[29]  Joonho Kim,et al.  Universal Effectiveness of High-Depth Circuits in Variational Eigenproblems , 2020, ArXiv.

[30]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[31]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[32]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[33]  Ross Duncan,et al.  Evaluating the noise resilience of variational quantum algorithms , 2020, Physical Review A.

[34]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[35]  Stefan Kuhn,et al.  Measurement error mitigation in quantum computers through classical bit-flip correction , 2020, Physical Review A.

[36]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[37]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[38]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.