Dimensional Expressivity Analysis of Parametric Quantum Circuits
暂无分享,去创建一个
Karl Jansen | Lena Funcke | Tobias Hartung | Paolo Stornati | Stefan Kühn | K. Jansen | T. Hartung | L. Funcke | S. Kühn | P. Stornati | Stefan Kühn | Paolo Stornati
[1] Koen Bertels,et al. Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability , 2020, Quantum Machine Intelligence.
[2] Luca Dellantonio,et al. Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer , 2020, PRX Quantum.
[3] T. Bækkegaard,et al. Single-qubit rotations in parameterized quantum circuits , 2020, 2005.13548.
[4] Ryan Babbush,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[5] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[6] K. Jansen,et al. Zeta-regularized vacuum expectation values fromquantum computing simulations , 2019, 1912.01276.
[7] Jacob biamonte,et al. Quantum machine learning , 2016, Nature.
[8] R. Pooser,et al. Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms , 2019, npj Quantum Information.
[9] Michael R. Geller,et al. Sampling and Scrambling on a Chain of Superconducting Qubits , 2017, Physical Review Applied.
[10] Travis S. Humble,et al. Quantum supremacy using a programmable superconducting processor , 2019, Nature.
[11] N. J. S. Loft,et al. Reducing the Amount of Single‐Qubit Rotations in VQE and Related Algorithms , 2020, Advanced Quantum Technologies.
[12] Krysta Marie Svore,et al. Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[13] Kristan Temme,et al. Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.
[14] Maria Schuld,et al. Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.
[15] Bryan T. Gard,et al. Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise , 2020, Physical Review Applied.
[16] Joseph Fitzsimons,et al. Compiling basic linear algebra subroutines for quantum computers , 2019, Quantum Machine Intelligence.
[17] Ashley Montanaro,et al. Quantum algorithms: an overview , 2015, npj Quantum Information.
[18] T. Hartung,et al. Zeta-regularized vacuum expectation values , 2018, Journal of Mathematical Physics.
[19] Nicholas J. Mayhall,et al. Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.
[20] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[21] S. Benjamin,et al. Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.
[22] John Preskill,et al. Quantum Computing in the NISQ era and beyond , 2018, Quantum.
[23] Luca Dellantonio,et al. A resource efficient approach for quantum and classical simulations of gauge theories in particle physics , 2021, Quantum.
[24] Marc Bataille. Quantum circuits of CNOT gates , 2020 .
[25] J. Whitfield,et al. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.
[26] W. Marsden. I and J , 2012 .
[27] Roman Orus,et al. Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.
[28] T. Monz,et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.
[29] Joonho Kim,et al. Universal Effectiveness of High-Depth Circuits in Variational Eigenproblems , 2020, ArXiv.
[30] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[31] P. Zoller,et al. Self-verifying variational quantum simulation of lattice models , 2018, Nature.
[32] Matthias Troyer,et al. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.
[33] Ross Duncan,et al. Evaluating the noise resilience of variational quantum algorithms , 2020, Physical Review A.
[34] Peter D. Johnson,et al. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.
[35] Stefan Kuhn,et al. Measurement error mitigation in quantum computers through classical bit-flip correction , 2020, Physical Review A.
[36] M. Girvin,et al. Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.
[37] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[38] S. Lloyd,et al. Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.