Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O)
暂无分享,去创建一个
Wenbo Song | Xiansheng Liu | E. Liang | Y. Cheng | M. Chao | Huanli Yuan | Baohe Yuan | Fuxing Cheng | Fanguo Li | Y. Cheng
[1] A. Arora,et al. Raman spectroscopic study of pressure induced amorphization in Cavansite , 2012, Journal of Physics: Conference Series.
[2] Qiang Sun,et al. Theoretical study of negative thermal expansion mechanism of ZnF2 , 2012 .
[3] Wenbo Song,et al. The phase transition, hygroscopicity, and thermal expansion properties of Yb2−xAlxMo3O12 , 2012 .
[4] B. Fultz,et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. , 2011, Physical review letters.
[5] E. Liang,et al. Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .
[6] Michel B. Johnson,et al. Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials , 2009 .
[7] Yi-jian Jiang,et al. Low-frequency phonon modes and negative thermal expansion in A(MO(4))(2) (A = Zr, Hf and M = W, Mo) by Raman and Terahertz time-domain spectroscopy. , 2008, The journal of physical chemistry. A.
[8] K. Tsuda,et al. Analysis of phase transition and expansion behaviour of Al2(WO4)3 by temperature‐regulated X‐ray diffraction , 2008 .
[9] F. Ferreira,et al. Low positive thermal expansion in HfMgMo3O12 , 2008 .
[10] A. Gindhart,et al. Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method , 2008 .
[11] Junping Wang,et al. Effect of Water Species on the Phonon Modes in Orthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy , 2008 .
[12] T. Varga,et al. Thermochemistry of A_2M_3O_12 negative thermal expansion materials , 2007 .
[13] E. Liang,et al. Raman spectroscopic study on the structure, phase transition and restoration of zirconium tungstate blocks synthesized with a CO2 laser , 2007 .
[14] A. G. S. Filho,et al. A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals , 2007 .
[15] Juan-Yu Yang,et al. Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion , 2007 .
[16] A. Umarji,et al. Negative thermal expansion in rare earth molybdates , 2006 .
[17] A. Omote,et al. Zero Thermal Expansion in (Al2x(HfMg)1−x)(WO4)3 , 2006 .
[18] F. Rizzo,et al. Negative thermal expansion in Y2Mo3O12 , 2005 .
[19] C. D. Meyer,et al. Synthesis and thermal expansion of ZrO2/ZrW2O8 composites , 2005 .
[20] M. Ma̧czka,et al. Phase transition and vibrational properties of A2(BO4)3 compounds (A=Sc, In; B=Mo, W) , 2005 .
[21] A. K. Tyagi,et al. Pressure-induced phase transitions in Al2(WO4)3 , 2005 .
[22] A. Arora,et al. Amorphization and decomposition of scandium molybdate at high pressure , 2005 .
[23] V. Sivasubramanian,et al. Low temperature Raman spectroscopic study of scandium molybdate , 2005 .
[24] D. Dunand,et al. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60vol%ZrW2O8 composite , 2004 .
[25] A. Omote,et al. Negative Thermal Expansion in (HfMg)(WO4)3 , 2004 .
[26] V. Sivasubramanian,et al. Structural phase transition in indium tungstate , 2004 .
[27] A. G. S. Filho,et al. Pressure-induced structural transformations in the molybdate Sc 2 ( MoO 4 ) 3 , 2004 .
[28] A. Sleight,et al. The role of rigid unit modes in negative thermal expansion , 2003 .
[29] A. K. Tyagi,et al. Phase transition and negative thermal expansion in A2(MoO4)3 system (A=Fe3+, Cr3+ and Al3+) , 2002 .
[30] S. N. Achary,et al. Preparation, thermal expansion, high pressure and high temperature behavior of Al2(WO4)3 , 2002 .
[31] A. Arora,et al. High-pressure Raman spectroscopic study of zirconium tungstate , 2001 .
[32] P. Lightfoot,et al. Negative thermal expansion in Y2(WO4)3 , 2000 .
[33] D. Dunand,et al. Phase transformation and thermal expansion of Cu/ZrW_2O_8 metal matrix composites , 1999 .
[34] A. Sleight,et al. Bulk thermal expansion for tungstate and molybdates of the type A_2M_3O_12 , 1999 .
[35] G. Adachi,et al. Trivalent Aluminum Ion Conducting Characteristics in Al2(WO4)3 Single Crystals , 1998 .
[36] Perottoni,et al. Pressure-induced amorphization and negative thermal expansion in ZrW2O8 , 1998, Science.
[37] J. S. Evans,et al. Pressure-induced phase transformation in ZrW2O8 — Compressibility and thermal expansion of the orthorhombic phase , 1997 .
[38] John S. O. Evans,et al. Negative Thermal Expansion in a Large Molybdate and Tungstate Family , 1997 .
[39] D. Dunand,et al. High-temperature reactivity in the ZrW2O8-Cu system , 1997 .
[40] Z. Hu,et al. Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8 , 1997, Science.
[41] John S. O. Evans,et al. Negative Thermal Expansion in ZrW2O8 and HfW2O8 , 1996 .
[42] John S. O. Evans,et al. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.
[43] M. Ma̧czka,et al. The structure and spectroscopic properties of Al2-xCrx(WO4)3 crystals in orthorhombic and monoclinic phases , 1993 .
[44] Strauss,et al. Characterization of the water of crystallization in CsMnCl3 , 1989, Physical review. B, Condensed matter.
[45] A. Sleight,et al. A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates , 1973 .