Project AMIGA: The Circumgalactic Medium of Andromeda

Project AMIGA (Absorption Maps In the Gas of Andromeda) is a survey of the circumgalactic medium (CGM) of Andromeda (M31, ≃ 300 kpc) along 43 QSO sightlines at impact parameters 25 ≤ R ≤ 569 kpc (25 at R ≲ ). We use ultraviolet absorption measurements of Si ii, Si iii, Si iv, C ii, and C iv from the Hubble Space Telescope/Cosmic Origins Spectrograph and O vi from the Far Ultraviolet Spectroscopic Explorer to provide an unparalleled look at how the physical conditions and metals are distributed in the CGM of M31. We find that Si iii and O vi have a covering factor near unity for R ≲ 1.2 and ≲1.9 , respectively, demonstrating that M31 has a very extended ∼104–105.5 K ionized CGM. The metal and baryon masses of the 104–105.5 K CGM gas within are ≳108 and ≳4 × 1010 (Z/0.3 Z⊙)−1 M⊙, respectively. There is not much azimuthal variation in the column densities or kinematics, but there is with R. The CGM gas at R ≲ 0.5 is more dynamic and has more complicated, multiphase structures than at larger radii, perhaps a result of more direct impact of galactic feedback in the inner regions of the CGM. Several absorbers are projected spatially and kinematically close to M31 dwarf satellites, but we show that those are unlikely to give rise to the observed absorption. Cosmological zoom simulations of ∼L* galaxies have O vi extending well beyond as observed for M31 but do not reproduce well the radial column density profiles of the lower ions. However, some similar trends are also observed, such as the lower ions showing a larger dispersion in column density and stronger dependence on R than higher ions. Based on our findings, it is likely that the Milky Way has a ∼104–105.5 K CGM as extended as for M31 and their CGM (especially the warm–hot gas probed by O vi) are overlapping.

[1]  B. O’Shea,et al.  Figuring Out Gas & Galaxies in Enzo (FOGGIE). III. The Mocky Way: Investigating Biases in Observing the Milky Way’s Circumgalactic Medium , 2020, The Astrophysical Journal.

[2]  C. Mandrini,et al.  Two successive partial mini-filament confined ejections , 2019, Advances in Space Research.

[3]  A. Wetzel,et al.  The fates of the circumgalactic medium in the FIRE simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  E. Quataert,et al.  The maximum accretion rate of hot gas in dark matter haloes , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  C. Faucher-Giguère A cosmic UV/X-ray background model update , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  Britton D. Smith,et al.  Figuring Out Gas & Galaxies in Enzo (FOGGIE). II. Emission from the z = 3 Circumgalactic Medium , 2018, The Astrophysical Journal.

[7]  The LUVOIR Team,et al.  The LUVOIR Mission Concept Study Final Report. , 2019, 1912.06219.

[8]  C. Ledoux,et al.  Slicing the cool circumgalactic medium along the major axis of a star-forming galaxy at z = 0.7 , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  S. Muzahid,et al.  The Relationship between Galaxy ISM and Circumgalactic Gas Metallicities , 2019, The Astrophysical Journal.

[10]  P. Hopkins,et al.  Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  P. Hopkins,et al.  But what about...: cosmic rays, magnetic fields, conduction, and viscosity in galaxy formation , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  B. Oppenheimer,et al.  The COS CGM Compendium. III. Metallicity and Physical Properties of the Cool Circumgalactic Medium at z ≲ 1 , 2019, The Astrophysical Journal.

[13]  J. Fynbo,et al.  The nature of strong H i absorbers probed by cosmological simulations: satellite accretion and outflows , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  P. Hopkins,et al.  Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV γ-ray emission , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Devin W. Silvia,et al.  The Impact of Enhanced Halo Resolution on the Simulated Circumgalactic Medium , 2018, The Astrophysical Journal.

[16]  P. Hopkins,et al.  The origins of the circumgalactic medium in the FIRE simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  M. Peeples,et al.  The Red Dead Redemption Survey of Circumgalactic Gas about Massive Galaxies. I. Mass and Metallicity of the Cool Phase , 2018, The Astrophysical Journal.

[18]  B. Oppenheimer,et al.  The COS CGM Compendium. II. Metallicities of the Partial and Lyman Limit Systems at z ≲ 1 , 2018, The Astrophysical Journal.

[19]  B. Williams,et al.  Spatially Resolved Metal Loss from M31 , 2018, The Astrophysical Journal.

[20]  Molly S. Peeples,et al.  Figuring Out Gas & Galaxies in Enzo (FOGGIE). I. Resolving Simulated Circumgalactic Absorption at 2 ≤ z ≤ 2.5 , 2018, The Astrophysical Journal.

[21]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  D. Som,et al.  Probing Structure in Cold Gas at z ≲ 1 with Gravitationally Lensed Quasar Sight Lines , 2014, The Astrophysical Journal.

[23]  J. Schaye,et al.  Characterizing circumgalactic gas around massive ellipticals atz≈ 0.4 – III. The galactic environment of a chemically pristine Lyman limit absorber , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  J. Suresh,et al.  Zooming in on accretion – II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  Sean D. Johnson,et al.  Characterizing circumgalactic gas around massive ellipticals atz∼ 0.4 – II. Physical properties and elemental abundances , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  John M. O'Meara,et al.  The COS CGM Compendium. I. Survey Design and Initial Results , 2018, The Astrophysical Journal.

[27]  V. Springel,et al.  Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H i column densities , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[28]  H Germany,et al.  Spatially resolved metal gas clouds , 2018, 1805.07192.

[29]  Michael E. Anderson,et al.  The Extended Distribution of Baryons around Galaxies , 2018, The Astrophysical Journal.

[30]  E. D’Onghia,et al.  The Fate of Supernova-heated Gas in Star-forming Regions of the LMC: Lessons for Galaxy Formation? , 2018, The Astrophysical Journal.

[31]  S. Muzahid,et al.  Understanding the strong intervening O vi absorber at zabs ∼ 0.93 towards PG1206+459 , 2018, 1802.00026.

[32]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[33]  A. J. Richings,et al.  The multiphase circumgalactic medium traced by low metal ions in EAGLE zoom simulations , 2017, Monthly Notices of the Royal Astronomical Society.

[34]  P. Morrissey,et al.  Andromeda’s Parachute: A Bright Quadruply Lensed Quasar at z = 2.377 , 2017, The Astrophysical Journal.

[35]  A. J. Richings,et al.  Flickering AGN can explain the strong circumgalactic O VI observed by COS-Halos , 2017, 1705.07897.

[36]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[37]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[38]  A. Rahmati,et al.  The metallicity distribution of H I systems in the EAGLE cosmological simulations , 2017, 1712.03988.

[39]  R. Beaton,et al.  Global Properties of M31’s Stellar Halo from the SPLASH Survey. III. Measuring the Stellar Velocity Dispersion Profile , 2017, 1711.02700.

[40]  B. Williams,et al.  PHAT. XIX. The Ancient Star Formation History of the M31 Disk , 2017 .

[41]  Molly S. Peeples,et al.  The Circumgalactic Medium , 2017, 1709.09180.

[42]  T. Jarrett,et al.  H i Kinematics and Mass Distribution of Messier 33 , 2017, 1706.04248.

[43]  Puragra Guhathakurta,et al.  Project AMIGA: A Minimal Covering Factor for Optically Thick Circumgalactic Gas around the Andromeda Galaxy , 2017, 1706.01893.

[44]  E. Bernard,et al.  A Rogues’ Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches , 2017, 1704.01586.

[45]  Durham,et al.  The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium , 2017, 1702.02618.

[46]  S. Mathur,et al.  Probing the Anisotropy of the Milky Way Gaseous Halo-II: Sightline toward Mrk 509 , 2016, 1611.05389.

[47]  P. Hopkins,et al.  The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations , 2016, 1610.08523.

[48]  Caltech,et al.  Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows , 2016, 1608.05712.

[49]  Devin Silvia,et al.  Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations , 2016, 1612.03935.

[50]  S. E. Nuza,et al.  An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group , 2016, 1611.07024.

[51]  M. Irwin,et al.  THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. II. DETAILED PROPERTIES OF 23 M31 DWARF SPHEROIDAL GALAXIES , 2016, 1610.01158.

[52]  David Schiminovich,et al.  THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS , 2016, 1609.06308.

[53]  J. Xavier Prochaska,et al.  LOW-METALLICITY ABSORBERS ACCOUNT FOR HALF OF THE DENSE CIRCUMGALACTIC GAS AT z ≲ 1 , 2016, 1608.02584.

[54]  J. Schaye,et al.  Observations of metals in the z ≈ 3.5 intergalactic medium and comparison to the EAGLE simulations , 2016, 1605.08700.

[55]  E. B. Jenkins,et al.  THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097 , 2016, 1605.04907.

[56]  A. J. Richings,et al.  Bimodality of low-redshift circumgalactic O VI in non-equilibrium EAGLE zoom simulations , 2016, 1603.05984.

[57]  S. Muzahid,et al.  MOLECULAR HYDROGEN ABSORPTION FROM THE HALO OF A z ∼ 0.4 GALAXY , 2016, 1601.06782.

[58]  Michelle L. Wilson,et al.  Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4–0.7 , 2015, 1510.04307.

[59]  A. Kravtsov,et al.  Column density profiles of multiphase gaseous haloes , 2015, 1507.07002.

[60]  J. Prochaska,et al.  A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASS- AND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM , 2015, 1512.00853.

[61]  E. D’Onghia,et al.  The Magellanic Stream: Circumnavigating the Galaxy , 2015, 1511.05853.

[62]  S. Muzahid,et al.  AN EXTREME METALLICITY, LARGE-SCALE OUTFLOW FROM A STAR-FORMING GALAXY AT z ∼ 0.4 , 2015, 1506.01028.

[63]  J. Peek,et al.  THE CIRCUMGALACTIC MEDIUM OF THE MILKY WAY IS HALF HIDDEN , 2015, 1504.05594.

[64]  B. Savage,et al.  NEARBY GALAXY FILAMENTS AND THE Lyα FOREST: CONFRONTING SIMULATIONS AND THE UV BACKGROUND WITH OBSERVATIONS , 2015, 1504.02539.

[65]  Sean D. Johnson,et al.  On the possible environmental effect in distributing heavy elements beyond individual gaseous haloes , 2015, 1503.04199.

[66]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[67]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[68]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[69]  B. M'enard,et al.  DUST IN THE CIRCUMGALACTIC MEDIUM OF LOW-REDSHIFT GALAXIES , 2014, 1411.3333.

[70]  K. Chambers,et al.  SPECTROSCOPY OF THE THREE DISTANT ANDROMEDAN SATELLITES CASSIOPEIA III, LACERTA I, AND PERSEUS I , 2014, 1408.5130.

[71]  K. Kwak,et al.  THE ORIGIN OF THE X-RAY EMISSION FROM THE HIGH-VELOCITY CLOUD MS30.7−81.4−118 , 2014, 1406.6363.

[72]  D. Weinberg,et al.  THE COS-DWARFS SURVEY: THE CARBON RESERVOIR AROUND SUB-L* GALAXIES , 2014, 1406.0509.

[73]  M. Irwin,et al.  The outer halo globular cluster system of M31 – II. Kinematics , 2014, 1406.0186.

[74]  N. Lehner,et al.  EVIDENCE FOR A MASSIVE, EXTENDED CIRCUMGALACTIC MEDIUM AROUND THE ANDROMEDA GALAXY , 2014, 1404.6540.

[75]  J. Ely,et al.  THE COS/UVES ABSORPTION SURVEY OF THE MAGELLANIC STREAM. III. IONIZATION, TOTAL MASS, AND INFLOW RATE ONTO THE MILKY WAY , 2014, 1404.5514.

[76]  S. E. Nuza,et al.  The distribution of gas in the Local Group from constrained cosmological simulations: the case for Andromeda and the Milky Way galaxies , 2014, 1403.7528.

[77]  B. Savage,et al.  THE PROPERTIES OF LOW REDSHIFT INTERGALACTIC O vi ABSORBERS DETERMINED FROM HIGH S/N OBSERVATIONS OF 14 QSOs WITH THE COSMIC ORIGINS SPECTROGRAPH , 2014, 1403.7542.

[78]  D. Weinberg,et al.  THE COS-HALOS SURVEY: PHYSICAL CONDITIONS AND BARYONIC MASS IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2014, 1403.0947.

[79]  Hsiao-Wen Chen,et al.  Mining circumgalactic baryons in the low-redshift universe , 2014, 1402.3602.

[80]  J. Xavier Prochaska,et al.  GALACTIC AND CIRCUMGALACTIC O vi AND ITS IMPACT ON THE COSMOLOGICAL METAL AND BARYON BUDGETS AT 2 < z ≲ 3.5 , 2014, 1401.1811.

[81]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[82]  M. Boylan-Kolchin,et al.  ELVIS: Exploring the Local Volume in Simulations , 2013, 1310.6746.

[83]  D. Weinberg,et al.  A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.

[84]  J. Xavier Prochaska,et al.  THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN , 2013, 1309.6317.

[85]  J. Prochaska,et al.  METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION? , 2013, 1307.6588.

[86]  S. Mathur,et al.  Probing the mass and anisotropy of the Milky Way gaseous halo: sight-lines toward Mrk 421 and PKS 2155-304 , 2013, 1307.6195.

[87]  B. Groves,et al.  ANDROMEDA'S DUST , 2013, 1306.2304.

[88]  J. Bregman,et al.  THE STRUCTURE OF THE MILKY WAY'S HOT GAS HALO , 2013, 1305.2430.

[89]  J. Schaye,et al.  AGN proximity zone fossils and the delayed recombination of metal lines , 2013, 1303.0019.

[90]  M. Irwin,et al.  A KINEMATIC STUDY OF THE ANDROMEDA DWARF SPHEROIDAL SYSTEM , 2013, 1302.6590.

[91]  J. Schaye,et al.  Non-equilibirum ionization and cooling of metal-enriched gas in the presence of a photoionization background , 2013, 1302.5710.

[92]  J. Prochaska,et al.  THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ≲ 1 , 2013, 1302.5424.

[93]  Jessica L. Rosenberg,et al.  HST/COS SPECTRA OF THREE QSOs THAT PROBE THE CIRCUMGALACTIC MEDIUM OF A SINGLE SPIRAL GALAXY: EVIDENCE FOR GAS RECYCLING AND OUTFLOW , 2013, 1301.4242.

[94]  B. Savage,et al.  Characterizing the Circumgalactic Medium of Nearby Galaxies with HST/COS and HST/STIS Absorption-line Spectroscopy. II. Methods and Models , 2012, 1212.5658.

[95]  G. Bryan,et al.  Constraints on hydrodynamical subgrid models from quasar absorption line studies of the simulated circumgalactic medium , 2012, 1212.2965.

[96]  J. Prochaska,et al.  THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2012, 1212.0558.

[97]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[98]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[99]  Michael E. Anderson,et al.  EXTENDED HOT HALOS AROUND ISOLATED GALAXIES OBSERVED IN THE ROSAT ALL-SKY SURVEY , 2012, 1211.5140.

[100]  Q. Wang,et al.  Comments on 'A huge reservoir of ionized gas around the Milky Way: accounting for the missing mass?' (2012 ApJL, 756, 8) and 'The warm-hot gaseous halo of the Milky Way' (arXiv1211.3137) , 2012, 1211.4834.

[101]  J. Xavier Prochaska,et al.  NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES , 2012, 1209.5442.

[102]  Portugal,et al.  The long bar as seen by the VVV survey - I. Colour–magnitude diagrams , 2012, 1209.4370.

[103]  M. E. Putman,et al.  Gaseous Galaxy Halos , 2012, 1207.4837.

[104]  R. Beaton,et al.  THE M31 VELOCITY VECTOR. II. RADIAL ORBIT TOWARD THE MILKY WAY AND IMPLIED LOCAL GROUP MASS , 2012, 1205.6864.

[105]  S. Mathur,et al.  A HUGE RESERVOIR OF IONIZED GAS AROUND THE MILKY WAY: ACCOUNTING FOR THE MISSING MASS? , 2012, 1205.5037.

[106]  J. Prochaska,et al.  THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z ∼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS , 2012, 1205.0270.

[107]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[108]  J. Meiring,et al.  High-velocity clouds as streams of ionized and neutral gas in the halo of the Milky Way , 2012, 1203.2626.

[109]  A. Riess,et al.  CEPHEID PERIOD–LUMINOSITY RELATIONS IN THE NEAR-INFRARED AND THE DISTANCE TO M31 FROM THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 , 2011, 1110.3769.

[110]  Piero Madau,et al.  RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.

[111]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[112]  J. Prochaska,et al.  The Hidden Mass and Large Spatial Extent of a Post-Starburst Galaxy Outflow , 2011, Science.

[113]  J. Christopher Howk,et al.  A Reservoir of Ionized Gas in the Galactic Halo to Sustain Star Formation in the Milky Way , 2011, Science.

[114]  J. Prochaska,et al.  THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY , 2011, 1108.3852.

[115]  J. Xavier Prochaska,et al.  EVIDENCE FOR COLD ACCRETION: PRIMITIVE GAS FLOWING ONTO A GALAXY AT z ∼ 0.274 , 2011, 1105.5381.

[116]  Michael E. Anderson,et al.  DETECTION OF A HOT GASEOUS HALO AROUND THE GIANT SPIRAL GALAXY NGC 1961 , 2011, 1105.4614.

[117]  J. Prochaska,et al.  THE GAS−GALAXY CONNECTION AT zabs = 0.35: O vi AND H i ABSORPTION TOWARD J 0943+0531 , 2011, 1105.4601.

[118]  Chung-Pei Ma,et al.  The baryonic assembly of dark matter haloes , 2011, 1103.0001.

[119]  P. McMillan,et al.  Mass models of the Milky Way , 2011, 1102.4340.

[120]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[121]  Ewan Cameron,et al.  On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach , 2010, Publications of the Astronomical Society of Australia.

[122]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[123]  B. Savage,et al.  FUNDAMENTAL PROPERTIES OF THE HIGHLY IONIZED PLASMAS IN THE MILKY WAY , 2010, 1011.2808.

[124]  W. B. Burton,et al.  THE 200° LONG MAGELLANIC STREAM SYSTEM , 2010, 1009.0001.

[125]  Amanda P. Fournier,et al.  THE SIZE AND ORIGIN OF METAL-ENRICHED REGIONS IN THE INTERGALACTIC MEDIUM FROM SPECTRA OF BINARY QUASARS , 2010, 1007.2457.

[126]  T. Murphy,et al.  GASS: The Parkes Galactic All-Sky Survey. II. Stray-Radiation Correction and Second Data Release , 2010, 1007.0686.

[127]  D. Fabbian,et al.  SOLAR ABUNDANCE CORRECTIONS DERIVED THROUGH THREE-DIMENSIONAL MAGNETOCONVECTION SIMULATIONS , 2010, 1006.0231.

[128]  L. Mattsson The origin of carbon: Low-mass stars and an evolving, initially top-heavy IMF? , 2010, 1003.3474.

[129]  Cambridge,et al.  The Masses of the Milky Way and Andromeda galaxies , 2010, 1002.4565.

[130]  D. Henley,et al.  AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. I. THE O vii AND O viii LINES BETWEEN l = 120° AND l = 240° , 2010, 1002.4631.

[131]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[132]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[133]  Brandon University,et al.  H i KINEMATICS AND DYNAMICS OF MESSIER 31 , 2009, 0909.3846.

[134]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[135]  Observatories of the Carnegie Institution of Washington,et al.  The evolution of carbon and oxygen in the bulge and disk of the Milky Way , 2009, 0907.4308.

[136]  L. Bianchi,et al.  AN ULTRAVIOLET STUDY OF STAR-FORMING REGIONS IN M31 , 2009, 0906.4839.

[137]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[138]  C. Danforth,et al.  A LARGE RESERVOIR OF IONIZED GAS IN THE GALACTIC HALO: IONIZED SILICON IN HIGH-VELOCITY AND INTERMEDIATE-VELOCITY CLOUDS , 2009, 0904.4901.

[139]  M. Fukugita,et al.  Measuring the galaxy–mass and galaxy–dust correlations through magnification and reddening , 2009, 0902.4240.

[140]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[141]  W. Dixon,et al.  The High-Velocity Gas toward Messier 5: Tracing Feedback Flows in the Inner Galaxy , 2008, 0802.0286.

[142]  U. N. Dame,et al.  A High-Resolution Survey of Low-Redshift QSO Absorption Lines: Statistics and Physical Conditions of O VI Absorbers , 2007, 0706.1214.

[143]  J. Peek,et al.  An Accurate Distance to High-Velocity Cloud Complex C , 2007, 0712.0612.

[144]  Puragra Guhathakurta,et al.  M31 Transverse Velocity and Local Group Mass from Satellite Kinematics , 2007, 0709.3747.

[145]  D. York,et al.  Distances to Galactic High-Velocity Clouds. I. Cohen Stream, Complex GCP, Cloud g1 , 2007, 0709.1926.

[146]  W. B. Burton,et al.  The Origin of the Magellanic Stream and Its Leading Arm , 2007, 0706.1578.

[147]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[148]  A. Sternberg,et al.  Time-dependent Ionization in Radiatively Cooling Gas , 2006, astro-ph/0608181.

[149]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[150]  B. Wakker,et al.  A FUSE Survey of High-Latitude Galactic Molecular Hydrogen , 2005, astro-ph/0512444.

[151]  B. Savage,et al.  Measurement of Noisy Absorption Lines Using the Apparent Optical Depth Technique , 2005, astro-ph/0508045.

[152]  Joachim Stadel,et al.  Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas , 2005, astro-ph/0504277.

[153]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[154]  Davis,et al.  Metal Abundances in a Damped Lyα System along Two Lines of Sight at z = 0.93 , 2005, astro-ph/0503026.

[155]  A. Babul,et al.  Investigating the Andromeda stream — I. Simple analytic bulge—disc—halo model for M31 , 2005, astro-ph/0501240.

[156]  M. Irwin,et al.  Distances and metallicities for 17 Local Group galaxies , 2004, astro-ph/0410489.

[157]  Henry C. Ferguson,et al.  RR Lyrae Stars in the Andromeda Halo from Deep Imaging with the Advanced Camera for Surveys , 2004, astro-ph/0402422.

[158]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[159]  P. Petitjean,et al.  The sizes and kinematic structure of absorption systems towards the lensed quasar APM08279+5255 , 2003, astro-ph/0310221.

[160]  S. Lacour,et al.  Far Ultraviolet Spectroscopic Explorer Survey of the Local Interstellar Medium within 200 Parsecs , 2003 .

[161]  S. Lacour,et al.  FUSE Survey of the Local Interstellar Medium within 200 Parsec , 2003, astro-ph/0306280.

[162]  D. York,et al.  The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in and near the Galaxy , 2003 .

[163]  E. Corbelli Dark matter and visible baryons in M33 , 2003, astro-ph/0302318.

[164]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[165]  J. Young,et al.  CO Luminosity Functions for Far-Infrared- and B-Band-selected Galaxies and the First Estimate for ΩHi + H2 , 2002, astro-ph/0209413.

[166]  B. Gibson,et al.  The Magellanic Stream, High-Velocity Clouds, and the Sculptor Group , 2002, astro-ph/0209127.

[167]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[168]  J. Blades,et al.  Lyα Absorption around Nearby Galaxies , 2002, astro-ph/0208003.

[169]  J. Young,et al.  CO LUMINOSITY FUNCTIONS FOR FIR AND B-BAND SELECTED GALAXIES AND THE FIRST ESTIMATE FOR ΩHI+H2 , 2002 .

[170]  W. Sargent,et al.  Small-Scale Structure at High Redshift. III. The Clumpiness of the Intergalactic Medium on Subkiloparsec Scales , 2001, astro-ph/0107516.

[171]  F. Keenan,et al.  HST/STIS observations of the high-velocity interstellar cloud HVC 291.2-41.2+80: a warm, mainly ionized high-velocity cloud , 2001 .

[172]  B. Wakker Distances and Metallicities of High- and Intermediate-Velocity Clouds , 2001, astro-ph/0102147.

[173]  James C. Green,et al.  Cosmic Origins Spectrograph , 2000, Optics + Photonics.

[174]  et al,et al.  Overview of the Far Ultraviolet Spectroscopic Explorer Mission , 2000, astro-ph/0005529.

[175]  James C. Green,et al.  THE COSMIC ORIGINS SPECTROGRAPH , 1999, Astronomical Telescopes + Instrumentation.

[176]  D. York,et al.  The Diffuse Interstellar Clouds toward 23 Orionis , 1999, astro-ph/9905234.

[177]  S. Courteau,et al.  The Solar Motion Relative to the Local Group , 1999, astro-ph/9903298.

[178]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[179]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. I. GHRS Observations of the Small Magellanic Cloud Star Sk 108 , 1997 .

[180]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[181]  A. Crotts,et al.  Spectroscopy of the double quasars Q1343+266A, B: A new determination of the size of Lyman-alpha forest absorbers , 1994, astro-ph/9409007.

[182]  E. Fitzpatrick,et al.  Composition of Interstellar Clouds in the Disk and Halo. IV. HD 215733 , 1993 .

[183]  P. Magain,et al.  A Spectroscopic Study of UM 673 A and B: On the Size of Lyman-Alpha Clouds , 1992 .

[184]  B. Wakker High-velocity clouds , 2010 .

[185]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[186]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[187]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. I - Univariate distributions , 1985 .

[188]  David W. Bacon,et al.  Using An Hyperbola as a Transition Model to Fit Two-Regime Straight-Line Data , 1974 .

[189]  G. Field Instability and Waves Driven by Radiation in Interstellar Space and in Cosmological Models , 1971 .

[190]  G. Vaucouleurs,et al.  Reference catalogue of bright galaxies , 1964 .