Exploring for a record of ancient Martian life.

The immediate task facing exopaleontology is to define a strategy to explore Mars for a fossil record during the decade-long exploration program that lies ahead. Consideration of the quality of paleontological information preserved under different geological conditions is important if we are to develop a strategy with broad applicability. The preservation of microbial fossils is strongly influenced by the physical, chemical, and biological factors of the environment which, acting together, determine the types of information that will be captured and retained in the rock record. In detrital sedimentary systems, preservation is favored by rapid burial in fine-grained, clay-rich sediments. In chemical sedimentary systems, preservation is enhanced by rapid entombment in fine-grained chemical precipitates. For long-term preservation, host rocks must be composed of stable minerals that are resistant to chemical weathering and that form an impermeable matrix and closed chemical system to protect biosignatures from alteration during subsequent diagenesis or metamorphism. In this context, host rocks composed of highly ordered, chemically stable mineral phases, like silica (e.g., cherts) or phosphate (e.g., phosphorites), are especially favored. Such lithologies tend to have very long crustal residence times and, along with carbonates and shales, are the most common host rocks for the Precambrian microfossil record on Earth. Although we make the defensible assumption that Mars was more like the Earth early in its history, clearly, the geological and historical differences between the two planets are many. Such differences must be carefully considered when adapting an Earth-based strategy to Mars.

[1]  Sherry L. Cady,et al.  Fossilization Processes in Thermal Springs , 1995 .

[2]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[3]  R. Zierenberg,et al.  Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge , 1990 .

[4]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[5]  Steven W. Squyres,et al.  Large-scale volcano-ground ice interactions on Mars , 1985 .

[6]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[7]  S. Clifford Polar basal melting on Mars , 1987 .

[8]  Karsten Pedersen,et al.  The deep subterranean biosphere , 1993 .

[9]  H. Hofmann Precambrian fossils, pseudofossils and problematica in Canada , 1971 .

[10]  D. D. Des Marais,et al.  Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. , 1993, Icarus.

[11]  B. Jakosky Mars volatile evolution: Evidence from stable isotopes , 1991 .

[12]  T. McGenity,et al.  Archaeal halophiles (halobacteria) from two British salt mines , 1993 .

[13]  L. P. Knauth,et al.  Life on Land in the Precambrian , 1994, Science.

[14]  H. Klein The search for life on Mars: What we learned from Viking , 1998 .

[15]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[16]  Jack D. Farmer,et al.  Exopaleontology and the search for a fossil record on Mars , 1994 .

[17]  Carol R. Stoker,et al.  The search for life on Mars: The role of rovers , 1998 .

[18]  J. Farmer,et al.  Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia. , 1996, Palaios.

[19]  W. Grant,et al.  Survival of Halobacteria Within Fluid Inclusions in Salt Crystals , 1988 .

[20]  Steven W. Squyres,et al.  Ancient aqueous sedimentation on Mars , 1988 .

[21]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[22]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[23]  T. D. Brock,et al.  Siliceous Algal and Bacterial Stromatolites in Hot Spring and Geyser Effluents of Yellowstone National Park , 1972, Science.

[24]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[25]  J. Burns,et al.  The astronomical theory of climatic change on Mars , 1980 .

[26]  Alexander F. H. Goetz,et al.  Remote sensing for exploration; an overview , 1983 .

[27]  W. L. Davis,et al.  Duration of liquid water habitats on early Mars. , 1991, Icarus.

[28]  J. Farmer,et al.  Microbial Fossils from Terrestrial Subsurface Hydrothermal Environments: Examples and Implications for Mars , 1997 .

[29]  D. Stakes,et al.  Biogeological Mineralization in Deep-Sea Hydrothermal Deposits , 1995, Science.

[30]  B. Clark Surviving the limits to life at the surface of Mars , 1998 .

[31]  Darrell P. Chandler,et al.  Potential for preservation of halobacteria and their macromolecular constituents in brine inclusions from bedded salt deposits , 1997, Optics & Photonics.

[32]  K. Nealson The limits of life on Earth and searching for life on Mars. , 1997, Journal of geophysical research.

[33]  C. Bell Saline lake carbonates within an Upper Jurassic‐Lower Cretaceous continental red bed sequence in the Atacama region of northern Chile , 1989 .

[34]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[35]  J. Cutts,et al.  Models of climate cycles recorded in Martian polar layered deposits , 1982 .

[36]  L. Benson Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas) , 1994 .

[37]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[38]  Steven W. Squyres,et al.  Martian fretted terrain: Flow of erosional debris , 1978 .

[39]  An Extensive Deposit of Crystalline Hematite in Terra Meridiani, Mars , 1999 .

[40]  N. Sleep,et al.  Refugia from asteroid impacts on early Mars and the early Earth , 1998 .

[41]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[42]  B. Simonson,et al.  Roll-up Structures: Evidence of In situ Microbial Mats in Late Archean Deep Shelf Environments , 1999 .

[43]  M. Golombek The Mars Pathfinder Mission , 1997 .

[44]  Long-term evolution of the biogeochemical carbon cycle , 1997 .

[45]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[46]  E. Roedder The fluids in salt , 1984 .

[47]  M. Schulte,et al.  Organic synthesis during fluid mixing in hydrothermal systems , 1998 .

[48]  Harold J. Morowitz,et al.  Annihilation of ecosystems by large asteroid impacts on the early Earth , 1989, Nature.

[49]  S. Squyres Urey prize lecture: Water on Mars , 1989 .

[50]  S. Mojzsis,et al.  Recognition of > or = 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. , 1997, Geochimica et cosmochimica acta.

[51]  V. Baker,et al.  Paleohydrology of Late Pleistocene Superflooding, Altay Mountains, Siberia , 1993, Science.

[52]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[53]  S. Squyres,et al.  Geomorphic Evidence for the Distribution of Ground Ice on Mars , 1986, Science.

[54]  Harold Masursky,et al.  An overview of geological results from Mariner 9 , 1973 .

[55]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[56]  B. Simoneit,et al.  Lipid biomarkers for bacterial ecosystems: studies of cultured organisms, hydrothermal environments and ancient sediments. , 1996, Ciba Foundation symposium.

[57]  C. Sagan The long winter model of Martian biology - A speculation. , 1971 .

[58]  J. Farmer,et al.  Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.

[59]  T. Onstott,et al.  Microbes deep inside the earth. , 1996 .

[60]  Philip R. Christensen,et al.  Thermal infrared emission spectroscopy of anhydrous carbonates , 1997 .

[61]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Brakenridge,et al.  Ancient hot springs on Mars: Origins and paleoenvironmental significance of small Martian valleys , 1985 .

[63]  Andrew H. Knoll,et al.  Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats , 1985 .

[64]  E. Shock,et al.  A geochemical model for the formation of hydrothermal carbonates on Mars , 1995, Nature.

[65]  R. Berner Calcium Carbonate Concretions Formed by the Decomposition of Organic Matter , 1968, Science.

[66]  R. Summons,et al.  Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments , 1990 .

[67]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[68]  C. F. Kahle Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicritisation , 1977 .

[69]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[70]  Virginia C. Gulick,et al.  Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars , 1998 .

[71]  P. Allison Konservat-Lagerstätten: cause and classification , 1988, Paleobiology.

[72]  M. Golombek,et al.  Mars Pathfinder Landing Site Workshop , 1994 .

[73]  J. Farmer Thermophiles, early biosphere evolution, and the origin of life on Earth: Implications for the exobiological exploration of Mars , 1998 .

[74]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[75]  W. Full,et al.  Evaluation of Multichannel Wiener Filters Applied to Fine Resolution Passive Microwave Images of First-Year Sea Ice , 1993 .

[76]  C. McKay,et al.  Antarctic paleolake sediments and the search for extinct life on Mars , 1998 .

[77]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[78]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[79]  A Case for Martian Salars and Saline Lakes During the Noachian , 1990 .

[80]  S. Golubić,et al.  The lithobiontic ecological niche, with special reference to microorganisms , 1981 .

[81]  M. Kennedy,et al.  Preservation records of micro-organisms: evidence of the tenacity of life. , 1994, Microbiology.

[82]  R. Castenholz,et al.  CHARACTERIZATION AND BIOLOGICAL IMPLICATIONS OF SCYTONEMIN, A CYANOBACTERIAL SHEATH PIGMENT 1 , 1991 .

[83]  D. M. Nelson,et al.  Geology of Xanthe Terra outflow channels and the Mars Pathfinder landing site , 1999 .

[84]  K. Pye,et al.  Early diagenetic mineralization and fossil preservation in modern carbonate concretions , 1994 .

[85]  M. Schaefer Aqueous geochemistry on early Mars. , 1993, Geochimica et cosmochimica acta.

[86]  J. Farmer,et al.  Palaeontology of Devonian thermal spring deposits, Drummond Basin, Australia , 1998 .

[87]  P. Komar Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels , 1980 .

[88]  Nathalie A. Cabrol,et al.  Limnologic Analysis of Gusev Crater Paleolake, Mars , 1997 .

[89]  J. Compton,et al.  MINERALIZATION OF ORGANOGENIC AMMONIUM IN THE MONTEREY FORMATION SANTA MARIA AND SAN JOAQUIN BASINS, CALIFORNIA, USA , 1992 .

[90]  Carol R. Stoker,et al.  The early environment and its evolution on Mars: Implication for life , 1989 .

[91]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[92]  D. Crown,et al.  Geologic evolution of the east rim of the Hellas basin Mars , 1991 .

[93]  P. Bennett,et al.  Geochemistry of ikaite formation at Mono Lake, California: Implications for the origin of tufa mounds , 1993 .

[94]  S. Mojzsis,et al.  Phosphates and carbon on Mars: Exobiological implications and sample return considerations , 1998 .

[95]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[96]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[97]  A. Rice,et al.  Volcanism and fossil biotas , 1990 .

[98]  Nadine G. Barlow Identification of possible source craters for Martian meteorite ALH84001 , 1997, Optics & Photonics.

[99]  W. Reeburgh,et al.  Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy , 1987 .

[100]  Victor R. Baker,et al.  Channels and valleys on Mars , 1983 .

[101]  Fossile Pilze in Eisen-Stromatolithen von Warstein (Rheinisches Schiefergebirge) , 1982 .

[102]  Jack Wisdom,et al.  Urey Prize Lecture - Chaotic dynamics in the solar system , 1987 .

[103]  B. Jones,et al.  Dendritic Calcite Crystals Formed by Calcification of Algal Filaments in a Vadose Environment , 1986 .

[104]  D. Scholl,et al.  Algae, contributors to the formation of calcareous tufa, Mono Lake, California , 1964 .

[105]  L. Rothschild,et al.  METABOLIC ACTIVITY OF MICROORGANISMS IN EVAPORITES 1 , 1994, Journal of phycology.

[106]  P. Allison The role of anoxia in the decay and mineralization of proteinaceous macro-fossils , 1988, Paleobiology.

[107]  Lazcano Araujo Reyes,et al.  Biotic survivors Libros review: G R Bock and Jamie A Goode (eds), Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (Wiley, New York) , 1997 .

[108]  R. Henley Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactors for the early development of life and hydrothermal ecosystems. , 1996, Ciba Foundation symposium.

[109]  J. Pollack,et al.  Quasi‐periodic climatic changes on Mars and Earth , 1981 .

[110]  D. Vaniman,et al.  Pedogenesis of siliceous calcretes at Yucca Mountain, Nevada , 1994 .

[111]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[112]  Jack D. Farmer,et al.  Biological versus inorganic processes in stromatolite morphogenesis: Observations from mineralizing sedimentary systems , 1994 .

[113]  B. Jones,et al.  Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile , 1997 .

[114]  D. Pieri Martian valleys: morphology, distribution, age, and origin. , 1980, Science.

[115]  A. Scott,et al.  An early terrestrial biota preserved by Visean vulcanicity in Scotland , 1990 .

[116]  M. Chapman Evidence, Age, and Thickness of a Frozen Paleolake in Utopia Planitia, Mars , 1994 .

[117]  J. Vestal,et al.  Survival of microorganisms in smectite clays: implications for Martian exobiology. , 1992, Icarus.

[118]  N. Trewin The Rhynie cherts: an early Devonian ecosystem preserved by hydrothermal activity. , 2007, Ciba Foundation symposium.

[119]  J. Zimbelman,et al.  "White Rock": an eroded Martian lacustrine deposit(?) , 1994 .

[120]  P. Komar Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth , 1979 .

[121]  James K. Crowley,et al.  Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals , 1991 .

[122]  Baerbel K. Lucchitta,et al.  Ice and debris in the fretted terrain, Mars , 1984 .

[123]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[124]  L. Prévôt,et al.  Phosphates and Fossil Preservation , 1991 .

[125]  M. Walter,et al.  Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana , 1990 .

[126]  L. Rothschild,et al.  Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. , 1990, Icarus.

[127]  J. Dymond,et al.  Bacterial mats from Crater Lake, Oregon and their relationship to possible deep-lake hydrothermal venting , 1989, Nature.

[128]  R Greeley,et al.  Site selection for Mars exobiology. , 1995, Advances in space research : the official journal of the Committee on Space Research.

[129]  Victor R. Baker,et al.  Erosion by catastrophic floods on Mars and Earth , 1974 .

[130]  A. Kahle Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .

[131]  Roger Buick,et al.  Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia , 1990 .

[132]  B. Jones,et al.  Biogenicity of Silica Precipitation Around Geysers and Hot-Spring Vents, North Island, New Zealand , 1997 .

[133]  James K. Crowley,et al.  Mapping playa evaporite minerals with AVIRIS data: a first report from Death Valley, California , 1993 .

[134]  B. Clark Geochemical components in Martian soil , 1993 .