Polydopamine-Modified Metal-Organic Framework Membrane with Enhanced Selectivity for Carbon Capture.

In this work, a versatile postmodification strategy based polydopamine (PDA) grafting is reported for improving CO2 separation performance of MOF membranes. Owning to the strong bioadhesion, PDA can be deposited on the UiO-66 membrane through a simple and mild process. Since PDA impregnation in invalid nanometer-sized pinholes and grain boundaries of the MOF membrane suppress nonselective gas transports, the modified PDA/UiO-66 membrane exhibits significantly enhanced CO2/N2 and CO2/CH4 selectivities of 51.6 and 28.9, respectively, which are 2-3 times higher than the reported MOF membranes with similar permeance. Meanwhile, because PDA modification do not change UiO-66 intrinsic pores and membrane thickness is submicrometer-sized, the CO2 permeance is 2-3 orders of magnitude larger than those membranes with similar selectivity, up to 3.7 × 10-7 mol m-2 s-1 Pa-1 (1115 GPU). Moreover, the PDA/UiO-66 membrane with good reproducibility has excellent long-term stability for CO2 capture under moist condition in 36 h measurement period.

[1]  Wanbin Li Metal–organic framework membranes: Production, modification, and applications , 2019, Progress in Materials Science.

[2]  Ming Xu,et al.  Virtual CO2 Emission Flows in the Global Electricity Trade Network. , 2018, Environmental science & technology.

[3]  Jungkyu Choi,et al.  Healing of Microdefects in SSZ-13 Membranes via Filling with Dye Molecules and Its Effect on Dry and Wet CO2 Separations , 2018 .

[4]  E. Rubin,et al.  Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture. , 2018, Environmental science & technology.

[5]  S. M. Moosavi,et al.  Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite , 2018, ACS central science.

[6]  Jianmeng Chen,et al.  Kinetics, Thermodynamics, and Mechanism of a Novel Biphasic Solvent for CO2 Capture from Flue Gas. , 2018, Environmental science & technology.

[7]  J. S. Ribeiro,et al.  Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O 2 /N 2 and CO 2 /N 2 separation , 2018 .

[8]  Hae‐Kwon Jeong,et al.  High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange. , 2018, Angewandte Chemie.

[9]  M. Fathizadeh,et al.  Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture , 2017, Nature Communications.

[10]  H. Zeng,et al.  Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2 Capture. , 2017, Environmental science & technology.

[11]  J. Wilcox,et al.  Vanadium As a Potential Membrane Material for Carbon Capture: Effects of Minor Flue Gas Species. , 2017, Environmental science & technology.

[12]  Prodromos Daoutidis,et al.  Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV , 2017, Science.

[13]  E. Zeng,et al.  Ultrathin metal–organic framework membrane production by gel–vapour deposition , 2017, Nature Communications.

[14]  Yi Liu,et al.  Microstructural Engineering and Architectural Design of Metal–Organic Framework Membranes , 2017, Advanced materials.

[15]  J. Gascón,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[16]  H. Kusuda,et al.  Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles , 2017, Nature Energy.

[17]  Cheng Cheng,et al.  Fabrication of Polyimide Membrane Incorporated with Functional Graphene Oxide for CO2 Separation: The Effects of GO Surface Modification on Membrane Performance. , 2017, Environmental science & technology.

[18]  J. Caro,et al.  Metal-Organic Framework UiO-66 Layer: A Highly Oriented Membrane with Good Selectivity and Hydrogen Permeance. , 2017, ACS applied materials & interfaces.

[19]  E. Litwiller,et al.  A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-Free Metal-Organic Framework Composite Membrane. , 2017, Angewandte Chemie.

[20]  W. Koros,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[21]  J. Caro,et al.  Sprayable, Large-Area Metal-Organic Framework Films and Membranes of Varying Thickness. , 2017, Chemistry.

[22]  Ali K. Sekizkardes,et al.  Continuous Flow Processing of ZIF-8 Membranes on Polymeric Porous Hollow Fiber Supports for CO2 Capture. , 2017, ACS applied materials & interfaces.

[23]  Y. S. Lin,et al.  Metal‐organic framework membrane process for high purity CO2 production , 2016 .

[24]  Gongpin Liu,et al.  UiO-66-polyether block amide mixed matrix membranes for CO2 separation , 2016 .

[25]  Sachin Chavan,et al.  Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis , 2016 .

[26]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[27]  Guoliang Zhang,et al.  Preparation of continuous NH2–MIL-53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification , 2015 .

[28]  M. W. Anjum,et al.  Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. , 2015, ACS applied materials & interfaces.

[29]  Andrew G. Livingston,et al.  Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation , 2015, Science.

[30]  Jiangnan Shen,et al.  Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide. , 2015, Environmental science & technology.

[31]  Kang Li,et al.  Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. , 2015, Journal of the American Chemical Society.

[32]  Zhi‐Kang Xu,et al.  Surface engineering of polymer membranes via mussel-inspired chemistry , 2015 .

[33]  J. Caro,et al.  Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. , 2015, Angewandte Chemie.

[34]  I. Pinnau,et al.  Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. , 2015, Journal of the American Chemical Society.

[35]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[36]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[37]  Qian Liu,et al.  Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. , 2013, Journal of the American Chemical Society.

[38]  Miao Yu,et al.  Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation , 2013, Science.

[39]  Hae‐Kwon Jeong,et al.  In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. , 2013, Journal of the American Chemical Society.

[40]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[41]  In Taek Song,et al.  Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation , 2012 .

[42]  Krista S. Walton,et al.  Tuning the adsorption properties of UiO-66 via ligand functionalization. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[43]  J. Caro,et al.  Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. , 2012, Angewandte Chemie.

[44]  G. Zhu,et al.  Hydrogen Selective NH2‐MIL‐53(Al) MOF Membranes with High Permeability , 2012 .

[45]  Christian Serre,et al.  A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. , 2012, Angewandte Chemie.

[46]  Z. Lai,et al.  Effective separation of propylene/propane binary mixtures by ZIF-8 membranes , 2012 .

[47]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[48]  J. Caro,et al.  Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. , 2011, Angewandte Chemie.

[49]  Hae‐Kwon Jeong,et al.  Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[50]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[51]  Surendar R. Venna,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[52]  David S. Lee,et al.  Shipping emissions: from cooling to warming of climate-and reducing impacts on health. , 2009, Environmental science & technology.

[53]  K. Lillerud,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[54]  L. Robeson,et al.  The upper bound revisited , 2008 .

[55]  J. Falconer,et al.  Modification of Zeolite Membranes for H2 Separation by Catalytic Cracking of Methyldiethoxysilane , 2005 .