Unimodal transform of variables selected by interval segmentation purity for classification tree modeling of high-dimensional microarray data.

[1]  Audrey Bihouée,et al.  Bioinformatics Applications Note Gene Expression Madgene: Retrieval and Processing of Gene Identifier Lists for the Analysis of Heterogeneous Microarray Datasets , 2022 .

[2]  B. Mittal,et al.  Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and gallbladder cancer risk in a population of Northern India , 2010, Cancer.

[3]  Eric E. Schadt,et al.  The effect of food intake on gene expression in human peripheral blood , 2009, Human molecular genetics.

[4]  Wen Du,et al.  New Variable Selection Method Using Interval Segmentation Purity with Application to Blockwise Kernel Transform Support Vector Machine Classification of High-Dimensional Microarray Data , 2009, J. Chem. Inf. Model..

[5]  Hai-Long Wu,et al.  Variable selection using probability density function similarity for support vector machine classification of high-dimensional microarray data. , 2009, Talanta.

[6]  David M. Holloway,et al.  Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo , 2008, PLoS Comput. Biol..

[7]  Alexander R. Pico,et al.  Pathway Analysis of Single-Nucleotide Polymorphisms Potentially Associated with Glioblastoma Multiforme Susceptibility Using Random Forests , 2008, Cancer Epidemiology Biomarkers & Prevention.

[8]  B Cochand-Priollet,et al.  Profiling and classification tree applied to renal epithelial tumours , 2007, Histopathology.

[9]  Ned S. Wingreen,et al.  Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation , 2007, PLoS Comput. Biol..

[10]  Jian-Hui Jiang,et al.  Radial Basis Function Network-Based Transform for a Nonlinear Support Vector Machine as Optimized by a Particle Swarm Optimization Algorithm with Application to QSAR Studies , 2007, J. Chem. Inf. Model..

[11]  Jian-Hui Jiang,et al.  Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: Application in QSAR studies of bioactivity of organic compounds , 2007, J. Comput. Chem..

[12]  T. Ahmad,et al.  HLA-DQB1*0201: a marker for good prognosis in British and Dutch patients with sarcoidosis. , 2002, American journal of respiratory cell and molecular biology.

[13]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[14]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[15]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[16]  J. Katahira,et al.  Clostridium perfringens Enterotoxin Utilizes Two Structurally Related Membrane Proteins as Functional Receptors in Vivo * , 1997, The Journal of Biological Chemistry.

[17]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  King-Sun Fu,et al.  Conceptual Clustering in Knowledge Organization , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Mårten Fryknäs,et al.  In Vitro Drug Sensitivity-Gene Expression Correlations Involve a Tissue of Origin Dependency , 2007, J. Chem. Inf. Model..

[20]  Michel Verleysen,et al.  Width optimization of the Gaussian kernels in Radial Basis Function Networks , 2002, ESANN.

[21]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.