The fault-tolerant capacitated K-center problem
暂无分享,去创建一个
[1] David B. Shmoys,et al. A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..
[2] Ján Plesník,et al. A heuristic for the p-center problems in graphs , 1987, Discret. Appl. Math..
[3] A. Frieze,et al. A simple heuristic for the p-centre problem , 1985 .
[4] Judit Bar-Ilan,et al. How to Allocate Network Centers , 1993, J. Algorithms.
[5] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[6] Aditya Bhaskara,et al. Centrality of trees for capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-center , 2014, Mathematical Programming.
[7] Samir Khuller,et al. The Capacitated K-Center Problem , 2000, SIAM J. Discret. Math..
[8] Samir Khuller,et al. LP Rounding for k-Centers with Non-uniform Hard Capacities , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[9] David B. Shmoys,et al. A unified approach to approximation algorithms for bottleneck problems , 1986, JACM.
[10] Judit Bar-Ilan,et al. Generalized submodular cover problems and applications , 2001, Theor. Comput. Sci..
[11] George L. Nemhauser,et al. Easy and hard bottleneck location problems , 1979, Discret. Appl. Math..
[12] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[13] Samir Khuller,et al. Fault tolerant K-center problems , 2000, Theor. Comput. Sci..