Modified genetic algorithm with sampling techniques for chemical engineering optimization

Abstract In this work, we develop a new efficient technique to enhance the optimization ability, and to improve the convergence speed of genetic optimization algorithm. We investigate and introduce a number of sampling techniques to generate a good set of initial population that encourages the exploration through out the search space and hence achieves better discovery of possible global optimum in the solution space. The introduced sampling techniques include Latin hypercube sampling (LHS), Faure sequence sampling (FSS), and Hammersley sequence sampling (HSS). The performances of the proposed algorithms and a conventional genetic algorithm using uniformly random population are compared, both in terms of solution quality and speed of convergence. A number of test problems and a case study, optimization of multi-effect distillation, demonstrate the feasibility and effectiveness of the proposed techniques. With the same parameters, our technique provides a better solution and converge to the global optimum faster than the traditional genetic algorithm.

[1]  Patrick Siarry,et al.  A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions , 2000, J. Heuristics.

[2]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[3]  Vasilios Manousiouthakis,et al.  Global optimization of chemical processes using the interval analysis , 1997 .

[4]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[5]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[6]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[7]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[8]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[9]  V. S. Summanwar,et al.  Solution of constrained optimization problems by multi-objective genetic algorithm , 2002 .

[10]  Hong-bo Hu,et al.  Optimization of production temperatures of heptaldehyde and methyl undecenoate from methyl ricinoleate by pyrolysis process , 2000 .

[11]  Masahiko Hirao,et al.  Decision support tools for environmentally benign process design under uncertainty , 2004, Comput. Chem. Eng..

[12]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[13]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[14]  B. Lin,et al.  Tabu search algorithm for chemical process optimization , 2004, Comput. Chem. Eng..

[15]  Mei Zhao,et al.  A niche hybrid genetic algorithm for global optimization of continuous multimodal functions , 2005, Appl. Math. Comput..

[16]  Pingjing Yao,et al.  Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm , 1998 .

[17]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[18]  Eduardo Saliby,et al.  Descriptive Sampling: A Better Approach to Monte Carlo Simulation , 1990 .

[19]  Jin-O Kim,et al.  Optimal service restoration and reconfiguration of network using Genetic-Tabu algorithm , 2004 .

[20]  Jose Leboreiro,et al.  Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework , 2004, Comput. Chem. Eng..

[21]  H. Faure Good permutations for extreme discrepancy , 1992 .

[22]  Ignacio E. Grossmann,et al.  Part II. Future perspective on optimization , 2004, Comput. Chem. Eng..

[23]  Jong-Ki Jeon,et al.  Comparison of Three- and Two-Column Configurations in Ethanol Dehydration Using Azeotropic Distillation , 2006 .

[24]  Sigurd Skogestad,et al.  Selecting appropriate control variables for a heat-integrated distillation system with prefractionator , 2004, Comput. Chem. Eng..

[25]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[26]  Nicholas I. M. Gould,et al.  A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds , 1997, Math. Comput..

[27]  Elisaveta G. Shopova,et al.  BASIC - A genetic algorithm for engineering problems solution , 2006, Comput. Chem. Eng..

[28]  Graham Kendall,et al.  Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems , 2006, Eur. J. Oper. Res..

[29]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[30]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[31]  Chun Lu,et al.  An improved GA and a novel PSO-GA-based hybrid algorithm , 2005, Inf. Process. Lett..