The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values

Context. In recent years new observations of pre-main sequence stars (pre-MS) with Z≤ Z⊙ have been made available. To take full advantage of the continuously growing amount of data of pre-MS stars in different environments, we need to develop updated pre-MS models for a wide range of metallicity to assign reliable ages and masses to the observed stars. Aims. We present updated evolutionary pre-MS models and isochrones for a fine grid of mass, age, metallicity, and helium values . Methods. We use a standard and well-tested stellar evolutionary code (i.e. FRANEC), that adopts outer boundary conditions from detailed and realistic atmosphere models. In this code, we incorporate additional improvements to the physical inputs related to the equation of state and the low temperature radiative opacities essential to computing low-mass stellar models. Results. We make available via internet a large database of pre-MS tracks and isochrones for a wide range of chemical compositions (Z = 0.0002− 0.03), masses (M = 0.2− 7.0 M⊙), and ages (1− 100 Myr) for a solar-calibrated mixing length parameterα (i.e. 1.68). For each chemical composition, additional models were computed with two different mixing length values, namelyα = 1.2 and 1.9. Moreover, for Z≥ 0.008, we also provided models with two different initial deuterium abundances. The characteristics o f the models have been discussed in detail and compared with other work in the literature. The main uncertainties affecting theoretical predictions have been critically discussed. Comparisons with selected data indicate that there is close agreement between theory and observation.

[1]  John N. Bahcall,et al.  Standard solar models, with and without helium diffusion and the solar neutrino problem , 1992 .

[2]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[3]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[4]  New light on the old problem of lithium pre-MS depletion: models with 2D RHD convection , 2006, astro-ph/0605620.

[5]  K. Swamy Profiles of strong lines in K- dwarfs , 1966 .

[6]  F. Palla,et al.  The evolution of intermediate-mass protostars. II: Influence of the accretion flow , 1992 .

[7]  George Sonneborn,et al.  What Is the Total Deuterium Abundance in the Local Galactic Disk , 2006 .

[8]  J. Montalbán,et al.  Clarifying Problems in the Description of Pre Main Sequence Evolution , 2006 .

[9]  P. Hauschildt,et al.  Surface convection and red-giant radius measurements , 2010, 1010.3649.

[10]  S. Quanz,et al.  Clustered Star Formation in the Small Magellanic Cloud. A Spitzer/IRAC View of the Star-Forming Region NGC 602/N 90 , 2007, 0705.3359.

[11]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[12]  The bottleneck of CNO burning and the age of Globular Clusters , 2004, astro-ph/0403071.

[13]  M. Pinsonneault,et al.  Rotation of low-mass stars - A new probe of stellar evolution , 1990 .

[14]  John N. Bahcall,et al.  Element Diffusion in the Solar Interior , 1992 .

[15]  P. Hauschildt,et al.  MODEL ATMOSPHERES OF VERY LOW MASS STARS AND BROWN DWARFS , 1997 .

[16]  Elvira Covino,et al.  Improved fundamental parameters for the low-mass pre-main sequence eclipsing system RX J0529.4+0041 , 2004 .

[17]  The ages of pre-main-sequence stars , 1999, astro-ph/9907439.

[18]  B.E.J. PagelL. Portinari Δ Y/Δ Z from fine structure in the main sequence based on Hipparcos parallaxes , 1997, astro-ph/9711332.

[19]  Linda J. Smith,et al.  Past and Present Star Formation in the SMC: NGC 346 and its Neighborhood* , 2007 .

[20]  P. Ventura,et al.  Updated pre-main sequence tracks at low metallicities for 0.1 ≤ M/M ≤ 1.5 , 2008, 0812.3838.

[21]  I. Mazzitelli,et al.  Stellar Turbulent Convection: A New Model and Applications , 1991 .

[22]  David R. Alexander,et al.  The NEXTGEN Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K , 1999, astro-ph/9907194.

[23]  I. Iben Stellar evolution. i - the approach to the main sequence. , 1965 .

[24]  M. Pinsonneault,et al.  Standard solar model , 1992 .

[25]  A. Lewis,et al.  Deuterium abundance in the most metal-poor damped Lyman alpha system: converging on Ωb,0h2 , 2008, 0805.0594.

[26]  New grids of ATLAS9 atmospheres I: Influence of convection treatments on model structure and on observable quantities , 2002, astro-ph/0206156.

[27]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[28]  B. Gibson,et al.  The Cosmic Production of Helium , 2003, Science.

[29]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2002 .

[30]  G. Chabrier,et al.  EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H–R DIAGRAMS? , 2009, 0907.3886.

[31]  M. Marconi,et al.  The FRANEC stellar evolutionary code , 2008 .

[32]  G. Steigman PRIMORDIAL NUCLEOSYNTHESIS: SUCCESSES AND CHALLENGES , 2005, astro-ph/0511534.

[33]  C. Lada,et al.  Low-Mass Star Formation and the Initial Mass Function in IC 348 , 1998 .

[34]  C. Rossi-Alvarez,et al.  S-factor of 14N(p,γ)15O at astrophysical energies⋆ , 2005, nucl-ex/0509005.

[35]  John P. Cox,et al.  Principles of stellar structure , 1968 .

[36]  G. Imbriani,et al.  Low energy measurement of the 14N(p, γ)15O total cross section at the LUNA underground facility , 2006 .

[37]  Wolfgang Brandner,et al.  Intermediate to low-mass stellar content of Westerlund 1 , 2007, 0711.1624.

[38]  D. VandenBerg,et al.  The prediction of stellar effective temperatures from the mixing-length theory of convection , 1990 .

[39]  I. Mazzitelli,et al.  Further improvements of a new model for turbulent convection in stars , 1992 .

[40]  F. Palla,et al.  The evolution of intermediate-mass protostars. I, Basic results , 1991 .

[41]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[42]  A. Nota,et al.  PRE-MAIN-SEQUENCE TURN-ON AS A CHRONOMETER FOR YOUNG CLUSTERS: NGC 346 AS A BENCHMARK , 2010, 1001.4442.

[43]  R. Gruendl,et al.  NGC 346 in the Small Magellanic Cloud. IV. Triggered Star Formation in the H II Region N66 , 2007, 0710.1352.

[44]  P. A. Bernasconi,et al.  Grids of stellar models - VIII. From 0.4 to 1.0 ${M_{\odot}}$ at $Z=0.020$ and $Z=0.001$, with the MHD equation of state , 1998 .

[45]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[46]  C. Hayashi,et al.  Evolution of Stars of Small Masses in the Pre-Main-Sequence Stages , 1963 .

[47]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[48]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[49]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[50]  E. Baron,et al.  The ACS Survey of Galactic Globular Clusters. II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models , 2007, 0706.0847.

[51]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[52]  E. Alfaro,et al.  Pre-main sequence stars in open clusters - I. The DAY-I catalogue , 2007, astro-ph/0703367.

[53]  Forrest J. Rogers,et al.  Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology , 2002 .

[54]  Dynamical Masses of T Tauri Stars and Calibration of Pre-Main-Sequence Evolution , 2000, astro-ph/0008370.

[55]  S. Randich,et al.  The effect of heavy element opacity on pre-main sequence Li depletion , 2006, astro-ph/0604157.

[56]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[57]  First measurement of the 14N(p,γ)15O cross section down to 70 keV , 2006, nucl-ex/0602012.

[58]  W. Tscharnuter,et al.  From clouds to stars - Protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung-Russell diagram , 2003 .

[59]  T. University,et al.  A Dynamical Mass Constraint for Pre-Main-Sequence Evolutionary Tracks: The Binary NTT 045251+3016 , 2001, astro-ph/0105017.

[60]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[61]  C. Flynn Cosmic Helium Production , 2004, Publications of the Astronomical Society of Australia.

[62]  S. Strom,et al.  Are wide pre-main-sequence binaries coeval? , 1994 .

[63]  W. Y. Chau,et al.  Theoretical models of low-mass stars and brown dwarfs. I. The lower main sequence , 1989 .

[64]  M. Marconi,et al.  Uncertainties on the theoretical predictions for classical Cepheid pulsational quantities , 2009, 0911.2840.

[65]  G. Goldring,et al.  Solar fusion cross sections , 1998 .

[66]  I. Goldman,et al.  Stellar Turbulent Convection: A Self-consistent Model , 1996 .

[67]  G. Neece Models of lower-main-sequence stars. , 1984 .

[68]  Low-Mass Pre-Main-Sequence Stars in the Large Magellanic Cloud. III. Accretion Rates from Hubble Space Telescope WFPC2 Observations* , 2004, astro-ph/0402459.

[69]  P. Ventura,et al.  First Results on Pre-Main-Sequence Evolution, Including a Magnetic Field , 2000 .

[70]  Italo Mazzitelli,et al.  New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convecti on model , 1994 .

[71]  Connecting the primordial and Galactic deuterium abundances , 2007, astro-ph/0703682.

[72]  F. Kupka,et al.  Convection in the atmospheres and envelopes of Pre-Main Sequence stars , 2004 .

[73]  F. Palla,et al.  Binary Masses as a Test for Pre-Main-Sequence Tracks , 2001 .

[74]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[75]  Wolfgang Brandner,et al.  The Arches Cluster: Evidence for a Truncated Mass Function? , 2005, astro-ph/0506575.

[76]  T. Henning,et al.  Discovery of the Pre-Main-Sequence Population of the Stellar Association LH 95 in the Large Magellanic Cloud with Hubble Space Telescope Advanced Camera for Surveys Observations , 2007, 0706.4377.

[77]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[78]  P. P. Eggleton,et al.  Approximate input physics for stellar modelling , 1995 .

[79]  Keivan G. Stassun,et al.  Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 M☉ Primary and a 0.7 M☉ Secondary , 2003, astro-ph/0312575.

[80]  P. H. Hauschildt,et al.  Numerical solution of the expanding stellar atmosphere problem , 1998 .

[81]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[82]  J. Geiss,et al.  Abundances of Deuterium and Helium-3 in the Protosolar Cloud , 1998 .

[83]  D. Alexander,et al.  Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints , 2000 .

[84]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .

[85]  William B. Hubbard,et al.  Cool zero-metallicity stellar atmospheres , 1994 .

[86]  V. Castellani,et al.  Calibrated stellar models for metal-poor populations , 2004, astro-ph/0405101.

[87]  M. Krumholz,et al.  ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS , 2011, 1101.3599.

[88]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[89]  T. Henning,et al.  The Low-Mass Pre-Main-Sequence Population of the Stellar Association LH 52 in the Large Magellanic Cloud Discovered with Hubble Space Telescope WFPC2 Observations , 2005, astro-ph/0512094.

[90]  T. Henning,et al.  The Star-forming Region NGC 346 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations. I. Photometry , 2006, astro-ph/0606582.

[91]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[92]  J. Auman Model atmospheres of late-type stars. , 1969 .

[93]  Nicola Da Rio,et al.  THE COMPLETE INITIAL MASS FUNCTION DOWN TO THE SUBSOLAR REGIME IN THE LARGE MAGELLANIC CLOUD WITH HUBBLE SPACE TELESCOPE ACS OBSERVATIONS, , 2009, 0902.0758.

[94]  Solar neutrino constraints on the BBN production of Li , 2003, astro-ph/0312629.

[95]  Thierry Montmerle,et al.  From darkness to light : origin and evolution of young stellar clusters : proceedings of a meeting held in Cargèse, Corsica, France, 3-8 April 2000 , 2001 .

[96]  S. Stahler The birthline for low-mass stars , 1983 .

[97]  Low mass pre-main sequence stars in the Large Magellanic Cloud II. HST-WFPC2 observations of two fields in the 30 Doradus region , 2005, astro-ph/0510171.

[98]  A. Nota,et al.  STAR FORMATION HISTORY IN THE SMALL MAGELLANIC CLOUD: THE CASE OF NGC 602 , 2009, 0901.1237.

[99]  On the Rotational Evolution of Young Low-Mass Stars , 1997 .

[100]  M. Peimbert,et al.  Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.

[101]  J. Linsky Deuterium Abundance in the Local ISM and Possible Spatial Variations , 1998 .

[102]  Francesco Palla,et al.  The Formation of Stars , 2005 .

[103]  R. Walterbos,et al.  Progressive Star Formation in the Young SMC Cluster NGC 602 , 2007, 0708.1138.

[104]  F. Allard,et al.  New Evolutionary Tracks for Very Low Mass Stars , 1995 .