Thermal resistance of a nanoscale point contact to an indium arsenide nanowire

The thermal resistance of a nanoscale point contact to an indium arsenide nanowire was experimentally determined to be two orders of magnitude larger than the theoretical prediction based on the diffuse mismatch model for a welded contact. The discrepancy is attributed mainly to a much smaller phonon transmission coefficient for the weak van der Waals contact than for a welded contact. The experiment further suggests the need of careful examination of the structure and defects in the nanowire sample for similar thermal transport measurements of individual nanowires. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623758]

[1]  Philippe Caroff,et al.  Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases , 2011 .

[2]  R. Venkatesh,et al.  Thermal resistance of metal nanowire junctions in the ballistic regime , 2011 .

[3]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[4]  Qing Li,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams , 2011, OPTO.

[5]  Deyu Li,et al.  Contact thermal resistance between individual multiwall carbon nanotubes , 2010 .

[6]  Jun Xu,et al.  Contact mechanics and thermal conductance of carbon nanotube array interfaces , 2009 .

[7]  P. McEuen,et al.  Thermal probing of energy dissipation in current-carrying carbon nanotubes , 2009, Journal of Applied Physics.

[8]  Ravi Prasher,et al.  Acoustic mismatch model for thermal contact resistance of van der Waals contacts , 2009 .

[9]  Eric Pop,et al.  The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes , 2008, Nanotechnology.

[10]  R. Prasher Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes , 2008 .

[11]  Tao Tong,et al.  Height independent compressive modulus of vertically aligned carbon nanotube arrays. , 2008, Nano letters.

[12]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[13]  Timothy S. Fisher,et al.  Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method , 2007 .

[14]  Li Shi,et al.  Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. , 2007, Nano letters.

[15]  Li Shi,et al.  Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon , 2007 .

[16]  A. Majumdar,et al.  Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials , 2007, IEEE Transactions on Components and Packaging Technologies.

[17]  Li Shi,et al.  Four-probe measurements of the in-plane thermoelectric properties of nanofilms. , 2007, The Review of scientific instruments.

[18]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[19]  Patrick E. Phelan,et al.  Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts , 2006 .

[20]  Hsin-Ying Chiu,et al.  Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates , 2006 .

[21]  Jun Li,et al.  Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber , 2006 .

[22]  Sinan Müftü,et al.  Nano-Scale Effects in the Sliding and Rolling of a Cylinder on a Substrate , 2005 .

[23]  Li Shi,et al.  Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution , 2004, Science.

[24]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[25]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[26]  A. Majumdar,et al.  Thermal Transport Mechanisms at Nanoscale Point Contacts , 2002 .

[27]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[28]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[29]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[30]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[31]  R. O. Pohl,et al.  Thermal resistance at interfaces , 1987 .

[32]  G. Wexler,et al.  The size effect and the non-local Boltzmann transport equation in orifice and disk geometry , 1966 .

[33]  C. Hui,et al.  A cohesive zone model for the adhesion of cylinders , 1997 .

[34]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .