Scaling security in pairing-based protocols
暂无分享,去创建一个
[1] Paulo S. L. M. Barreto,et al. On the Selection of Pairing-Friendly Groups , 2003, Selected Areas in Cryptography.
[2] Hovav Shacham,et al. Short Signatures from the Weil Pairing , 2001, J. Cryptol..
[3] Peter J. Smith,et al. LUC: A New Public Key System , 1993, SEC.
[4] M. Jason Hinek,et al. On Some Attacks on Multi-prime RSA , 2002, Selected Areas in Cryptography.
[5] Marc Joye,et al. The Montgomery Powering Ladder , 2002, CHES.
[6] Kristin E. Lauter,et al. Fast Elliptic Curve Arithmetic and Improved Weil Pairing Evaluation , 2003, CT-RSA.
[7] Alfred Menezes,et al. Pairing-Based Cryptography at High Security Levels , 2005, IMACC.
[8] Arjen K. Lenstra,et al. Selecting Cryptographic Key Sizes , 2000, Journal of Cryptology.
[9] Arjen K. Lenstra,et al. The XTR Public Key System , 2000, CRYPTO.
[10] Paulo S. L. M. Barreto,et al. Generating More MNT Elliptic Curves , 2006, Des. Codes Cryptogr..
[11] Michael Scott,et al. Faster Pairings Using an Elliptic Curve with an Efficient Endomorphism , 2005, INDOCRYPT.
[12] Paulo S. L. M. Barreto,et al. Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.
[13] Alfred Menezes,et al. Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.
[14] Paulo S. L. M. Barreto,et al. Constructing Elliptic Curves with Prescribed Embedding Degrees , 2002, SCN.
[15] Steven D. Galbraith,et al. Implementing the Tate Pairing , 2002, ANTS.
[16] Annegret Weng,et al. Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..
[17] Paulo S. L. M. Barreto,et al. Compressed Pairings , 2004, CRYPTO.
[18] Roberto Maria Avanzi,et al. On multi-exponentiation in cryptography , 2002, IACR Cryptol. ePrint Arch..
[19] A. Miyaji,et al. New Explicit Conditions of Elliptic Curve Traces for FR-Reduction , 2001 .
[20] Paulo S. L. M. Barreto,et al. Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.
[21] Paulo S. L. M. Barreto,et al. Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..
[22] David Mandell Freeman,et al. Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 , 2006, ANTS.
[23] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[24] Alice Silverberg,et al. Supersingular Abelian Varieties in Cryptology , 2002, CRYPTO.
[25] J. Pollard,et al. Monte Carlo methods for index computation () , 1978 .
[26] Y. Nogami. A Fast Implementation of Elliptic Curve Cryptosystem with Prime Order Defined over F(p8) , 2003 .
[27] Michael Scott,et al. Computing the Tate Pairing , 2005, CT-RSA.
[28] Andreas Enge,et al. Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields , 2004, Journal of Cryptology.