A Comparison of Frailty and Other Models for Bivariate Survival Data

Multivariate survival data arise when eachstudy subject may experience multiple events or when study subjectsare clustered into groups. Statistical analyses of such dataneed to account for the intra-cluster dependence through appropriatemodeling. Frailty models are the most popular for such failuretime data. However, there are other approaches which model thedependence structure directly. In this article, we compare thefrailty models for bivariate data with the models based on bivariateexponential and Weibull distributions. Bayesian methods providea convenient paradigm for comparing the two sets of models weconsider. Our techniques are illustrated using two examples.One simulated example demonstrates model choice methods developedin this paper and the other example, based on a practical dataset of onset of blindness among patients with diabetic Retinopathy,considers Bayesian inference using different models.

[1]  P. Gustafson Flexible Bayesian Modelling for Survival Data , 1998, Lifetime data analysis.

[2]  Alan E. Gelfand,et al.  Model Determination using sampling-based methods , 1996 .

[3]  Larry Lee,et al.  Multivariate distributions having Weibull properties , 1979 .

[4]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.

[5]  J. Lu,et al.  Some new constructions of bivariate Weibull models , 1990 .

[6]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[7]  M. Crowder Identifiability crises in competing risks , 1994 .

[8]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[9]  Jye-Chyi Lu,et al.  Weibull extensions of the Freund and Marshall-Olkin bivariate exponential models , 1989 .

[10]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[11]  R Brookmeyer,et al.  Modelling paired survival data with covariates. , 1989, Biometrics.

[12]  Purushottam W. Laud,et al.  Predictive Model Selection , 1995 .

[13]  D K Dey,et al.  A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data , 1997, Lifetime data analysis.

[14]  J P Klein,et al.  Semiparametric Marshall-Olkin models applied to the occurrence of metastases at multiple sites after breast cancer. , 1989, Biometrics.

[15]  H. Joe Multivariate models and dependence concepts , 1998 .

[16]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[17]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[18]  David D. Hanagal Some Inference Results in Modified Freund's Bivariate Exponential Distribution , 1992 .

[19]  D G Clayton,et al.  A Monte Carlo method for Bayesian inference in frailty models. , 1991, Biometrics.

[20]  Frank Proschan,et al.  Estimating the Parameters of a Bivariate Exponential Distribution in Several Sampling Situations. , 1973 .

[21]  Henry W. Block,et al.  A Continuous, Bivariate Exponential Extension , 1974 .

[22]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[23]  J. E. Freund A Bivariate Extension of the Exponential Distribution , 1961 .

[24]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[25]  D. Dey,et al.  Semiparametric Bayesian analysis of survival data , 1997 .

[26]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[27]  C. K. Ghosh,et al.  Latent Waiting Time Models For BivariateEvent Times With , 1996 .

[28]  P Gustafson,et al.  Large hierarchical Bayesian analysis of multivariate survival data. , 1997, Biometrics.

[29]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .