The physical and chemical characteristics of the shell of air-entrained bubbles in cement paste

Abstract Recent research has suggested that the shell of an air-entrained void is important for resisting coalescence between air-voids and diffusion of gas from the surrounding fluid. The current paper describes the physical and chemical properties of an air-void shell during the first 2 h of hydration and chemical characteristics at 60 days. Results from this research suggest that the air-void shells found in air-entrained paste have varied physical properties and the crystalline material of these shells is largely made up of fine cement particles during the first 2 h of hydration. Observations of paste at 60 days of hydration suggest that the shell is made up of calcium silicate hydrate (C–S–H) with a morphology different from that in the bulk paste.