Fully conv-deconv network for unsupervised spectral-spatial feature extraction of hyperspectral imagery via residual learning

Supervised approaches classify input data using a set of representative samples for each class, known as training samples. The collection of such samples are expensive and time-demanding. Hence, unsupervised feature learning, which has a quick access to arbitrary amount of unlabeled data, is conceptually of high interest. In this paper, we propose a novel network architecture, fully Conv-Deconv network with residual learning, for unsupervised spectral-spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end manner. Specifically, our network is based on the so-called encoder-decoder paradigm, i.e., the input 3D hyperspectral patch is first transformed into a typically lower-dimensional space via a convolutional sub-network (encoder), and then expanded to reproduce the initial data by a deconvolutional sub-network (decoder). Experimental results on the Pavia University hyperspectral data set demonstrate competitive performance obtained by the proposed methodology compared to other studied approaches.

[1]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Xiao Xiang Zhu,et al.  Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[4]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Qingshan Liu,et al.  Cascaded Recurrent Neural Networks for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  Xiao Xiang Zhu,et al.  Deep Recurrent Neural Networks for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Baojun Zhao,et al.  Spectral–spatial classification of hyperspectral remote sensing image based on capsule network , 2019, The Journal of Engineering.

[9]  Xiao Xiang Zhu,et al.  A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[10]  Lichao Mou,et al.  Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection , 2016, Remote. Sens..