Sublimation-induced shape evolution of silver cubes.

DARPA (Army/AMCOM/REDSTONE AR) [W31P4Q-08-1-0009]; BES DOE [DE-FG02-07ER46394]; Air Force Office [FA9550-08-1-0446]; DARPA/ARO [W911NF-08-1-0249]; KAUST Global Research Partnership ; World Premier International Research Center (WPI) ; MEXT (Japan) ; NSF [DMS 0706436, CMMI 0403671]; China Scholarship Council (CSC) [20073020]

[1]  Pietronero,et al.  Surface melting of copper. , 1985, Physical review. B, Condensed matter.

[2]  R. Paniago,et al.  Thermal expansion of the Ag(110) surface studied by low-energy electron diffraction and density-functional theory , 2003 .

[3]  L. Pietronero,et al.  Multilayer relaxation and melting of a metal surface , 1985 .

[4]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[5]  J. Frenken,et al.  Observation of surface-initiated melting. , 1986, Physical review. B, Condensed matter.

[6]  M. G. Buivid,et al.  Superheated liquids containing suspended particles , 1978, Nature.

[7]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[8]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[9]  Lu,et al.  Temperature dependent sign reversal of the surface contraction of Ag(111). , 1994, Physical review letters.

[10]  T. Rahman,et al.  THERMAL EXPANSION OF AG(111) , 1997 .

[11]  J. L. McAtee,et al.  Thermal Decomposition of Organo-Ammonium Compounds Exchanged onto Montmorillonite and Hectorite , 1969 .

[12]  I. Stensgaard,et al.  Surface relaxation of Cu(110): An ion scattering investigation , 1983 .

[13]  Oscillatory Relaxation of the Cu(110) Surface , 1982 .

[14]  T. Rahman,et al.  Validity of the quasiharmonic analysis for surface thermal expansion of Ag(111). , 2001, Physical review letters.

[15]  J. Sambles,et al.  An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and the mean surface energy of solid silver , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  A. Maisels,et al.  Higher surface energy of free nanoparticles. , 2003, Physical review letters.

[17]  B. Chatterjee Anisotropy of melting for cubic metals , 1978, Nature.

[18]  Choi,et al.  Size-dependent melting temperature of individual nanometer-sized metallic clusters. , 1990, Physical review. B, Condensed matter.

[19]  V. Bortolani,et al.  Premelting of the Al(110) surface from a local perspective , 2000 .

[20]  Temperature dependent surface relaxations of Ag(111) , 1998, cond-mat/9807198.

[21]  J. Frenken,et al.  Observation of surface melting. , 1985, Physical review letters.

[22]  Smith,et al.  New approach to calculation of total energies of solids with defects: Surface-energy anisotropies. , 1987, Physical review letters.

[23]  C. Ohm,et al.  Enhanced Thermal Stability of Gold and Silver Nanorods by Thin Surface Layers , 2007 .

[24]  H. L. Davis,et al.  Multilayer relaxation in metallic surfaces as demonstrated by LEED analysis , 1982 .