Parameterized aspects of triangle enumeration

Abstract The task of listing all triangles in an undirected graph is a fundamental graph primitive with numerous applications. It is trivially solvable in time cubic in the number of vertices. It has seen a significant body of work contributing to both theoretical aspects (e.g., lower and upper bounds on running time, adaption to new computational models) as well as practical aspects (e.g. algorithms tuned for large graphs). Motivated by the fact that the worst-case running time is cubic, we perform a systematic parameterized complexity study of triangle enumeration. We provide both positive results (new enumerative kernelizations, “subcubic” parameterized solving algorithms) as well as negative results (presumable uselessness in terms of “faster” parameterized algorithms of certain parameters such as graph diameter). To this end, we introduce new and extend previous concepts.

[1]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[2]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[3]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[4]  Leland L. Beck,et al.  Smallest-last ordering and clustering and graph coloring algorithms , 1983, JACM.

[5]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[6]  Srinivasan Parthasarathy,et al.  Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[7]  Luca Becchetti,et al.  Efficient algorithms for large-scale local triangle counting , 2010, TKDD.

[8]  David A. Bader,et al.  Faster Clustering Coefficient Using Vertex Covers , 2013, 2013 International Conference on Social Computing.

[9]  Guillaume Ducoffe,et al.  Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs , 2019, ACM Trans. Algorithms.

[10]  Ulrik Brandes,et al.  Triangle Listing Algorithms: Back from the Diversion , 2014, ALENEX.

[11]  Rasmus Pagh,et al.  Triangle Counting in Dynamic Graph Streams , 2014, Algorithmica.

[12]  Marc Timme,et al.  Collective Relaxation Dynamics of Small-World Networks , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Emilio Ferrara,et al.  Measurement and Analysis of Online Social Networks Systems , 2014, Encyclopedia of Social Network Analysis and Mining.

[14]  Laurent Viennot,et al.  A Synthesis on Partition Refinement: A Useful Routine for Strings, Graphs, Boolean Matrices and Automata , 1998, STACS.

[15]  Tsvi Kopelowitz,et al.  Higher Lower Bounds from the 3SUM Conjecture , 2014, SODA.

[16]  Mihail N. Kolountzakis,et al.  Efficient Triangle Counting in Large Graphs via Degree-Based Vertex Partitioning , 2010, Internet Math..

[17]  Rolf Niedermeier,et al.  Reflections on Multivariate Algorithmics and Problem Parameterization , 2010, STACS.

[18]  Frédéric Magniez,et al.  Improved Quantum Query Algorithms for Triangle Detection and Associativity Testing , 2015, Algorithmica.

[19]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[20]  Rolf Niedermeier,et al.  Data Reduction for Maximum Matching on Real-World Graphs , 2018, ESA.

[21]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[22]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[23]  Michal Pilipczuk,et al.  Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low Treewidth , 2015, SODA.

[24]  Jan Kratochvíl,et al.  Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width , 2012, MFCS.

[25]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[26]  R. Rothenberg,et al.  Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs , 2002, Sexually transmitted infections.

[27]  Jan Arne Telle,et al.  Feedback vertex set on graphs of low clique-width , 2013, Eur. J. Comb..

[28]  Christian Komusiewicz,et al.  When can Graph Hyperbolicity be computed in Linear Time? , 2017, WADS.

[29]  Arne Meier,et al.  Paradigms for Parameterized Enumeration , 2013, Theory of Computing Systems.

[30]  Rolf Niedermeier,et al.  The Power of Linear-Time Data Reduction for Maximum Matching , 2017, Algorithmica.

[31]  Thore Husfeldt,et al.  Computing Graph Distances Parameterized by Treewidth and Diameter , 2017, IPEC.

[32]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs , 2016, SODA.

[33]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[34]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[35]  David Eppstein,et al.  Journal of Graph Algorithms and Applications the H-index of a Graph and Its Application to Dynamic Subgraph Statistics , 2022 .

[36]  Hamida Seba,et al.  An efficient exact algorithm for triangle listing in large graphs , 2016, Data Mining and Knowledge Discovery.

[37]  Tsvi Kopelowitz,et al.  Dynamic Set Intersection , 2014, WADS.

[38]  Ziv Bar-Yossef,et al.  Reductions in streaming algorithms, with an application to counting triangles in graphs , 2002, SODA '02.

[39]  Rolf Niedermeier,et al.  Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs , 2017, Theor. Comput. Sci..

[40]  Richard Ryan Williams,et al.  Subcubic Equivalences between Path, Matrix and Triangle Problems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[41]  André Nichterlein,et al.  Kernelization Lower Bounds for Finding Constant Size Subgraphs , 2017, CiE.

[42]  Rasmus Pagh,et al.  MapReduce Triangle Enumeration With Guarantees , 2014, CIKM.

[43]  Rolf Niedermeier,et al.  An Adaptive Version of Brandes' Algorithm for Betweenness Centrality , 2018, ISAAC.

[44]  Huacheng Yu,et al.  Matching Triangles and Basing Hardness on an Extremely Popular Conjecture , 2015, STOC.

[45]  Dorothea Wagner,et al.  Finding, Counting and Listing All Triangles in Large Graphs, an Experimental Study , 2005, WEA.

[46]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[47]  Michel Habib,et al.  A Simple Linear Time LexBFS Cograph Recognition Algorithm , 2003, WG.

[48]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[49]  Yufei Tao,et al.  I/O-Efficient Algorithms on Triangle Listing and Counting , 2014, ACM Trans. Database Syst..

[50]  Alon Itai,et al.  Finding a Minimum Circuit in a Graph , 1978, SIAM J. Comput..

[51]  Jason Noble,et al.  Extremism Propagation in Social Networks with Hubs , 2008, Adapt. Behav..

[52]  Matthieu Latapy,et al.  Main-memory triangle computations for very large (sparse (power-law)) graphs , 2008, Theor. Comput. Sci..

[53]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.