Finite Rank Criteria for ${H^\infty}$ Control of Infinite-Dimensional Systems

This paper studies the Hinfin control of infinite-dimensional systems whose transfer matrices are expressible as a series connection of a rational transfer matrix and a scalar (possibly irrational) inner function. This class of systems is adequate for describing many control problems in practice, when weighting functions are rational and plants have at most finitely many unstable modes. We show that this problem can be reduced to solving two matrix-valued Riccati equations and an additional rank condition. Furthermore, the obtained controller structure is characterized by the inner function and controllers for the finite-dimensional part. This result provides us with a solution that is easily implementable without much prior knowledge on infinite-dimensional control theory. A numerical example is given to illustrate the result.

[1]  F. R. Gantmakher The Theory of Matrices , 1984 .

[2]  Kenji Kashima,et al.  A new expression for the H2 performance limit based on state-space representation , 2007, 2007 European Control Conference (ECC).

[3]  Kenji Kashima,et al.  A Hamiltonian-based solution to the mixed sensitivity optimization problem for stable pseudorational plants , 2005, Syst. Control. Lett..

[4]  L. Mirkin,et al.  H∞ Control of systems with multiple I/O delays* , 2003 .

[5]  Akira Kojima,et al.  Robust controller design for delay systems in the gap-metric , 1995, IEEE Trans. Autom. Control..

[6]  Bassam Bamieh,et al.  A general framework for linear periodic systems with applications to H/sup infinity / sampled-data control , 1992 .

[7]  Akira Kojima,et al.  Formulas on Preview and Delayed $H^{\infty}$ Control , 2006, IEEE Transactions on Automatic Control.

[8]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[9]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[10]  Hitay Özbay,et al.  Robust Control of Infinite Dimensional Systems: Frequency Domain Methods , 1996 .

[11]  Kentaro Hirata,et al.  A Hamiltonian-based solution to the two-block H∞ problem for general plants in H∞ and rational weights , 2000 .

[12]  Kenji Kashima A new expression for the H 2 performance limit based on state-space representation , 2006 .

[13]  P. Khargonekar,et al.  On the weighted sensitivity minimization problem for delay systems , 1987 .

[14]  Bassam Bamieh,et al.  A General Framework for Linear Periodic Sampled-Data Control Systems with Applications to , 1992 .

[15]  Onur Toker,et al.  H∞ optimal and suboptimal controllers for infinite dimensional SISO plants , 1995, IEEE Trans. Autom. Control..

[16]  Sanjoy K. Mitter,et al.  A note on essential spectra and norms of mixed Hankel-Toeplitz operators , 1988 .

[17]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[18]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[19]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[20]  A. Tannenbaum,et al.  Weighted sensitivity minimization: General plants in H∞ and rational weights , 1988, 26th IEEE Conference on Decision and Control.

[21]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[22]  Yutaka Yamamoto,et al.  Some remarks on Hamiltonians and the infinite-dimensional one block H ∞ problem , 1996 .

[23]  A. Kojima,et al.  Formulas on Preview and Delayed Control , 2006 .

[24]  P. Fuhrmann On the hamiltonian structure in the computation of singular values for a class of Hankel operators , 1991 .

[25]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[26]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[27]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[28]  Kenji Kashima,et al.  On standard Hinfinity control problems for systems with infinitely many unstable poles , 2008, Syst. Control. Lett..

[29]  M. Zwaan An introduction to hilbert space , 1990 .

[30]  Leonid Mirkin,et al.  On the extraction of dead-time controllers and estimators from delay-free parametrizations , 2003, IEEE Trans. Autom. Control..

[31]  L. Magni,et al.  Lecture Notes in Control and Information Sciences: Preface , 2009 .

[32]  Suat Gumussoy,et al.  On the mixed sensitivity minimization for systems with infinitely many unstable modes , 2004, Syst. Control. Lett..

[33]  Gene H. Golub,et al.  Matrix computations , 1983 .

[34]  Tosio Kato Perturbation theory for linear operators , 1966 .

[35]  David S. Flamm,et al.  Outer factor ‘absorption’ for H∞ control problems , 1992 .

[36]  Gjerrit Meinsma,et al.  Control of systems with I/O delay via reduction to a one-block problem , 2002, IEEE Trans. Autom. Control..

[37]  Malcolm C. Smith Singular values and vectors of a class of Hankel operators , 1989 .

[38]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[39]  Hisaya Fujioka Computing $ {{\bf L}_{2}}$ -Gain of Finite-Horizon Systems With Boundary Conditions , 2007, IEEE Transactions on Automatic Control.

[40]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[41]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[42]  S. Hara,et al.  Worst-case analysis and design of sampled-data control systems , 1993, IEEE Trans. Autom. Control..

[43]  L. Mirkin,et al.  H/sup /spl infin// control of systems with multiple I/O delays via decomposition to adobe problems , 2005, IEEE Transactions on Automatic Control.

[44]  L. Mirkin,et al.  H∞control of systems with multiple I/O delays. Part II: simplifications , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[45]  Kenji Kashima,et al.  A new characterization of invariant subspaces of H2 and applications to the optimal sensitivity problem , 2005, Syst. Control. Lett..

[46]  Geir E. Dullerud,et al.  Computing the L2-induced norm of a compression operator , 1999 .

[47]  Hans Zwart,et al.  On 𝒽∞ control for dead-time systems , 2000, IEEE Trans. Autom. Control..