Distributed Bayesian vector estimation using noise-optimized low-resolution sensor observations

Abstract The distributed Bayesian vector parameter estimation problem based on low-resolution observations is investigated in a network, where each node represents an ensemble of estimates from a large number of sensors. A noise-enhanced Bayesian vector estimator that benefits from artificially added noise is proposed. For a network node composed of a sufficiently large number of identical low-resolution sensors, a lemma governing the weight coefficients is proven, and low-cost calculation expressions of the designed estimator and its Bayesian mean square error (MSE) are derived by avoiding costly computations due to high-dimensional matrix inversions. Experimental results show that by intentionally adding an appropriate amount of noise to networks of the low-resolution sensors, the MSE of the designed Bayesian vector estimator can be significantly reduced.

[1]  Azadeh Vosoughi,et al.  On Distributed Linear Estimation With Observation Model Uncertainties , 2017, IEEE Transactions on Signal Processing.

[2]  Onkar Dabeer,et al.  Signal Parameter Estimation Using 1-Bit Dithered Quantization , 2006, IEEE Transactions on Information Theory.

[3]  N. Stocks,et al.  Suprathreshold stochastic resonance in multilevel threshold systems , 2000, Physical review letters.

[4]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[5]  François Chapeau-Blondeau,et al.  Fisher information and noise-aided power estimation from one-bit quantizers , 2008, Digit. Signal Process..

[6]  Michael Elad,et al.  MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance , 2018, IEEE Transactions on Signal Processing.

[7]  Koh Hosoda,et al.  Noise-modulated neural networks as an application of stochastic resonance , 2018, Neurocomputing.

[8]  N. D. Stein,et al.  Stochastic resonance , 1993, Scholarpedia.

[9]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.

[10]  Georg Zeitler,et al.  Bayesian Parameter Estimation Using Single-Bit Dithered Quantization , 2012, IEEE Transactions on Signal Processing.

[11]  Sinan Gezici,et al.  CRLB Based Optimal Noise Enhanced Parameter Estimation Using Quantized Observations , 2010, IEEE Signal Processing Letters.

[12]  Shujun Liu,et al.  Noise benefits parameter estimation in LMMSE sense , 2018, Digit. Signal Process..

[13]  H. Vincent Poor,et al.  Noise Enhanced Hypothesis-Testing in the Restricted Bayesian Framework , 2010, IEEE Transactions on Signal Processing.

[14]  W. Bastiaan Kleijn,et al.  Distribution Preserving Quantization With Dithering and Transformation , 2010, IEEE Signal Processing Letters.

[15]  Minyue Li,et al.  Distribution Preserving Quantization , 2011, ArXiv.

[16]  Qiqing Zhai,et al.  Noise effect on signal quantization in an array of binary quantizers , 2018, Signal Process..

[17]  Pramod K. Varshney,et al.  Theory of the Stochastic Resonance Effect in Signal Detection: Part I—Fixed Detectors , 2007, IEEE Transactions on Signal Processing.

[18]  A. Sutera,et al.  The mechanism of stochastic resonance , 1981 .

[19]  Ashok Patel,et al.  Optimal Mean-Square Noise Benefits in Quantizer-Array Linear Estimation , 2010, IEEE Signal Processing Letters.

[20]  C. Pearce,et al.  Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization , 2008 .

[21]  Pramod K. Varshney,et al.  Nonparametric one-bit quantizers for distributed estimation , 2010, IEEE Trans. Signal Process..

[22]  Pramod K. Varshney,et al.  Noise-Enhanced Information Systems , 2014, Proceedings of the IEEE.

[23]  Derek Abbott,et al.  Noise Benefits in Combined Nonlinear Bayesian Estimators , 2019, IEEE Transactions on Signal Processing.

[24]  François Chapeau-Blondeau,et al.  Noise-enhanced performance for an optimal Bayesian estimator , 2004, IEEE Transactions on Signal Processing.

[25]  S. Kay,et al.  Can detectability be improved by adding noise? , 2000, IEEE Signal Processing Letters.

[26]  F. Chapeau-Blondeau,et al.  Enhancing threshold neural network via suprathreshold stochastic resonance for pattern classification , 2021, Physics Letters A.

[27]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding from noisy measurements using quantizers with dynamic bias control , 2001, IEEE Trans. Inf. Theory.

[28]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[29]  Azadeh Vosoughi,et al.  Distributed Vector Estimation for Power- and Bandwidth-Constrained Wireless Sensor Networks , 2015, IEEE Transactions on Signal Processing.

[30]  Azadeh Vosoughi,et al.  On Bayesian Fisher Information Maximization for Distributed Vector Estimation , 2017, IEEE Transactions on Signal and Information Processing over Networks.

[31]  Azadeh Vosoughi,et al.  Noise enhanced distributed Bayesian estimation , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  S. Engelberg An introduction to dither , 2012, IEEE Instrumentation & Measurement Magazine.

[33]  Derek Abbott,et al.  Exploring $Bona~Fide$ Optimal Noise for Bayesian Parameter Estimation , 2020, IEEE Access.

[34]  Fanrang Kong,et al.  Effects of underdamped step-varying second-order stochastic resonance for weak signal detection , 2015, Digit. Signal Process..

[35]  Pramod K. Varshney,et al.  Noise Enhanced Parameter Estimation , 2008, IEEE Transactions on Signal Processing.

[36]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function , 2006, IEEE Transactions on Signal Processing.

[37]  Pramod K. Varshney,et al.  Performance Limit for Distributed Estimation Systems With Identical One-Bit Quantizers , 2010, IEEE Transactions on Signal Processing.

[38]  Pramod K. Varshney,et al.  Theory of the Stochastic Resonance Effect in Signal Detection—Part II: Variable Detectors , 2007, IEEE Transactions on Signal Processing.

[39]  Stefan Uhlich Bayes Risk Reduction of Estimators Using Artificial Observation Noise , 2015, IEEE Transactions on Signal Processing.

[40]  Onkar Dabeer,et al.  Multivariate Signal Parameter Estimation Under Dependent Noise From 1-Bit Dithered Quantized Data , 2008, IEEE Transactions on Information Theory.

[41]  Keyou You,et al.  Recursive algorithms for parameter estimation with adaptive quantizer , 2015, Autom..

[42]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[43]  Bhaskar D. Rao,et al.  Antithetic Dithered 1-Bit Massive MIMO Architecture: Efficient Channel Estimation via Parameter Expansion and PML , 2019, IEEE Transactions on Signal Processing.

[44]  Johann F. Böhme,et al.  A pseudo-noise approach to direction finding , 1998, Signal Process..

[45]  Rick S. Blum,et al.  Parameter Estimation From Quantized Observations in Multiplicative Noise Environments , 2015, IEEE Transactions on Signal Processing.

[46]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.