MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning

This paper presents an agent-based simulator for environmental land change that includes efficient and parallel auto-tuning. This simulator extends the Multi-Agent System for Environmental simulation (MASE) by introducing rationality to agents using a mentalistic approach—the Belief-Desire-Intention (BDI) model—and is thus named MASE-BDI. Because the manual tuning of simulation parameters is an error-prone, labour and computing intensive task, an auto-tuning approach with efficient multi-objective optimization algorithms is also introduced. Further, parallelization techniques are employed to speed up the auto-tuning process by deploying it in parallel systems. The MASE-BDI is compared to the MASE using the Brazilian Cerrado biome case. The MASE-BDI reduces the simulation execution times by at least 82 × and slightly improves the simulation quality. The auto-tuning algorithms, by evaluating less than 0.00115 % of a search space with 6 million parameter combinations, are able to quickly tune the simulation model, regardless of the objective used. Moreover, the experimental results show that executing the tuning in parallel leads to speedups of approximately 11 × compared to sequential execution in a hardware setting with 16-CPU cores.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[3]  D. Skole,et al.  Land Use and Land Cover Change , 2014 .

[4]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Reference Manual , 2001 .

[5]  Katherine Yelick,et al.  OSKI: A library of automatically tuned sparse matrix kernels , 2005 .

[6]  Wendy Jepson,et al.  A disappearing biome? Reconsidering land‐cover change in the Brazilian savanna , 2005 .

[7]  Eric Koomen,et al.  Comparing the input, output, and validation maps for several models of land change , 2008 .

[8]  Hassan Bevrani,et al.  Load–frequency control : a GA-based multi-agent reinforcement learning , 2010 .

[9]  Eric F. Lambin,et al.  Land-Use and Land-Cover Change , 2006 .

[10]  Helmar Burkhart,et al.  PATUS: A Code Generation and Auto-Tuning Framework For Parallel Stencil Computations , 2011 .

[11]  Adel M. Alimi,et al.  Multi-agent evolutionary design of Beta fuzzy systems , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[12]  Lars Braubach,et al.  Jadex Active Components Framework - BDI Agents for Disaster Rescue Coordination , 2012, Software Agents, Agent Systems and Their Applications.

[13]  Shoaib Kamil,et al.  OpenTuner: An extensible framework for program autotuning , 2014, 2014 23rd International Conference on Parallel Architecture and Compilation (PACT).

[14]  Agostino Poggi,et al.  Developing Multi-agent Systems with JADE , 2007, ATAL.

[15]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[16]  Gerhard Weiss,et al.  Multiagent Systems , 1999 .

[17]  Célia Ghedini Ralha,et al.  A multi-agent model system for land-use change simulation , 2013, Environ. Model. Softw..

[18]  Robert J. Marquis,et al.  The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna , 2002 .

[19]  Jorge Luis Silva Brito,et al.  Mapeamento semidetalhado do uso da terra do Bioma Cerrado , 2008 .

[20]  John F. Richards,et al.  The Cambridge Encyclopedia of Human Evolution.@@@The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere Over the Past 300 Years. , 1993 .

[21]  Carlos A. Klink,et al.  A conservação do Cerrado brasileiro , 2005 .

[22]  Christie Allan,et al.  The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna , 2003 .

[23]  Bart De Schutter,et al.  Stability of Cascaded Fuzzy Systems and Observers , 2009, IEEE Transactions on Fuzzy Systems.

[24]  Michael J. North,et al.  Complex adaptive systems modeling with Repast Simphony , 2013, Complex Adapt. Syst. Model..

[25]  Winfried Lamersdorf,et al.  Jadex: Implementing a BDI-Infrastructure for JADE Agents , 2003 .

[26]  I-Hsin Chung,et al.  Active Harmony: Towards Automated Performance Tuning , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[27]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[28]  Timothy J. Killeen,et al.  Advances in Applied Biodiversity Science: A Perfect Storm in the Amazon Wilderness: Development and Conservation in the Context of the Initiative for the Integration of the Regional Infrastructure of South America (IIRSA) , 2007 .

[29]  Omar M. Shehata,et al.  A Hybrid Fuzzy-Genetic Controller for a multi-agent intersection control system , 2014, 2014 International Conference on Engineering and Technology (ICET).

[30]  Helmar Burkhart,et al.  PATUS: A Code Generation and Autotuning Framework for Parallel Iterative Stencil Computations on Modern Microarchitectures , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[31]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Developers Manual (title change from electronic posting) , 2002 .

[32]  Uri Wilensky,et al.  NetLogo: A simple environment for modeling complexity , 2014 .

[33]  Frank Allgöwer,et al.  Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays , 2008, 2008 47th IEEE Conference on Decision and Control.

[34]  Guilherme G. Oliveira,et al.  Simplifying artificial neural network models of river basin behaviour by an automated procedure for input variable selection , 2015, Eng. Appl. Artif. Intell..

[35]  Michael E. Bratman,et al.  Intention, Plans, and Practical Reason , 1991 .

[36]  Vahid Tabatabaee,et al.  Parallel Parameter Tuning for Applications with Performance Variability , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[37]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[38]  Leandro dos Santos Coelho,et al.  Wavenet using artificial bee colony applied to modeling of truck engine powertrain components , 2015, Eng. Appl. Artif. Intell..

[39]  Ananta Tiwari,et al.  Online Adaptive Code Generation and Tuning , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[40]  Steven L. Lytinen,et al.  Agent-based Simulation Platforms: Review and Development Recommendations , 2006, Simul..

[41]  Andreas Kerschbaumer,et al.  A new structure identification scheme for ANFIS and its application for the simulation of virtual air pollution monitoring stations in urban areas , 2015, Eng. Appl. Artif. Intell..

[42]  Abder Koukam,et al.  Application of Reactive Multi-agent System to Vehicle Collision Avoidance , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[43]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[44]  Dipti Srinivasan,et al.  Urban traffic signal control using reinforcement learning agents , 2010 .

[45]  Anand S. Rao,et al.  BDI Agents: From Theory to Practice , 1995, ICMAS.

[46]  Christophe Le Page,et al.  CORMAS : A multiagent simulation toolkit to model natural and social dynamics at multiple scales , 2000 .