Using Piecewise Linear Functions for Solving MINLP s
暂无分享,去创建一个
Björn Geißler | Alexander Martin | Antonio Morsi | Lars Schewe | Björn Geißler | Alexander Martin | A. Morsi | L. Schewe
[1] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .
[2] A. S. Manne,et al. On the Solution of Discrete Programming Problems , 1956 .
[3] G. Dantzig. ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .
[4] E. M. L. Beale,et al. Global optimization using special ordered sets , 1976, Math. Program..
[5] R. R. Meyer,et al. Mixed integer minimization models for piecewise-linear functions of a single variable , 1976, Discret. Math..
[6] M. Todd. Hamiltonian triangulations of Rn , 1979 .
[7] Stephen C. Graves,et al. A composite algorithm for a concave-cost network flow problem , 1989, Networks.
[8] Christodoulos A Floudas,et al. Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..
[9] Manfred Padberg,et al. Location, Scheduling, Design and Integer Programming , 2011, J. Oper. Res. Soc..
[10] Manfred W. Padberg,et al. Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..
[11] Warren D. Smith. A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes , 2000, Eur. J. Comb..
[12] Arkadi Nemirovski,et al. On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..
[13] Jon Lee,et al. Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..
[14] George L. Nemhauser,et al. Models for representing piecewise linear cost functions , 2004, Oper. Res. Lett..
[15] John J. Bartholdi,et al. The vertex-adjacency dual of a triangulated irregular network has a Hamiltonian cycle , 2004, Oper. Res. Lett..
[16] F. Tardella. On the existence of polyhedral convex envelopes , 2004 .
[17] George L. Nemhauser,et al. A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization , 2006, Oper. Res..
[18] Thomas L. Magnanti,et al. Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..
[19] George L. Nemhauser,et al. Nonconvex, lower semicontinuous piecewise linear optimization , 2008, Discret. Optim..
[20] Hai Zhao,et al. A special ordered set approach for optimizing a discontinuous separable piecewise linear function , 2008, Oper. Res. Lett..
[21] Robert Weismantel,et al. The Convex Envelope of (n--1)-Convex Functions , 2008, SIAM J. Optim..
[22] George L. Nemhauser,et al. Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2008, Math. Program..
[23] Christodoulos A. Floudas,et al. Tight convex underestimators for $${\mathcal{C}^2}$$ -continuous problems: II. multivariate functions , 2008, J. Glob. Optim..
[24] Christodoulos A. Floudas,et al. Tight convex underestimators for $${{\mathcal C}^2}$$-continuous problems: I. univariate functions , 2008, J. Glob. Optim..
[25] George L. Nemhauser,et al. Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions , 2010, Oper. Res..
[26] Alexander Martin,et al. A mixed integer approach for time-dependent gas network optimization , 2010, Optim. Methods Softw..