Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel

In this study, analytical and simulation results for the bit error rate (BER) performance and fading penalty of a coherent optical binary polarisation shift keying (2PolSK) heterodyne system adopted for a free-space optical communication link modelled as the log-normal and the negative exponential atmospheric turbulence channels are presented. The conditional and unconditional BER expressions are derived, demonstrating the comprehensive similarity between the 2PolSK and the binary frequency shift keying schemes with regard to the system sensitivity. The power penalty owing to the non-ideal polarisation beam splitter is also analysed. The receiver sensitivity employing 2PolSK is compared with other modulation schemes in the presence of turbulence and the phase noise. The results show that 2PolSK offers improved signal-to-noise ratio performance compared to the binary amplitude shift keying.

[1]  L. Andrews,et al.  I–K distribution as a universal propagation model of laser beams in atmospheric turbulence , 1985 .

[2]  F. Stremler Introduction to Communication Systems , 1977 .

[3]  A.A.M. Saleh An investigation of laser wave depolarization by atmospheric transmission , 1967 .

[4]  Renato Caponi,et al.  An experiment of optical heterodyne transmission with polarization modulation at 140 Mbit/s bitrate and 1550 nm wavelength , 1991, IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record.

[5]  Sevia Mahdaliza Idrus,et al.  Atmospheric Transmission Limitations , 2008 .

[6]  Edward Collett The Stokes Polarization Parameters , 2005 .

[7]  Jasmin Grosinger Investigation of polarization modulation in optical free space communications through the atmosphere , 2008 .

[8]  Nan Chi,et al.  Generation and transmission performance of 40 Gbit/s polarisation shift keying signal , 2005 .

[9]  Chao Liu,et al.  Circle Polarization Shift Keying With Direct Detection for Free-Space Optical Communication , 2009, IEEE/OSA Journal of Optical Communications and Networking.

[10]  W. Pratt Laser Communication Systems. , 1969 .

[11]  Edward Collett,et al.  Polarized light. Fundamentals and applications , 1993 .

[12]  Antonio García-Zambrana,et al.  Efficient lognormal channel model for turbulent FSO communications , 2007 .

[13]  Sevia Mahdaliza Idrus,et al.  Optical Wireless Communications: IR for Wireless Connectivity , 2008 .

[14]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .

[15]  Gregory R. Osche Optical Detection Theory for Laser Applications , 2002 .

[16]  John G. Proakis,et al.  Digital Communications , 1983 .

[17]  S. Benedetto,et al.  Multilevel polarization modulation using a specifically designed LiNbO/sub 3/ device , 1994, IEEE Photonics Technology Letters.

[18]  Maïté Brandt-Pearce,et al.  Free-space optical MIMO transmission with Q-ary PPM , 2005, IEEE Transactions on Communications.

[19]  A. Saleh,et al.  9.4 - An investigation of laser wave depolarization due to atmospheric transmission , 1967 .

[20]  G. Contestabile,et al.  1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications , 2009, IEEE Journal on Selected Areas in Communications.

[21]  H. Ghafouri-Shiraz,et al.  Transceiver Architecture for Incoherent Optical CDMA Networks Based on Polarization Modulation , 2008, Journal of Lightwave Technology.

[22]  Zabih Ghassemlooy,et al.  BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence , 2009, Journal of Lightwave Technology.

[23]  Joseph M. Kahn,et al.  Free-space optical communication through atmospheric turbulence channels , 2002, IEEE Trans. Commun..