On an Uzawa smoother in multigrid for poroelasticity equations
暂无分享,去创建一个
Cornelis W. Oosterlee | Francisco José Gaspar | Carmen Rodrigo | Peiyao Luo | C. Oosterlee | C. Rodrigo | F. Gaspar | Peiyao Luo
[1] Cornelis W. Oosterlee,et al. Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs , 2011, Numer. Linear Algebra Appl..
[2] Justin W. L. Wan,et al. Practical Fourier analysis for multigrid methods , 2007, Math. Comput..
[3] Cornelis W. Oosterlee,et al. A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system , 2004, Numer. Linear Algebra Appl..
[4] L. Tham,et al. Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks , 2004 .
[5] F. Musy,et al. A Fast Solver for the Stokes Equations Using Multigrid with a UZAWA Smoother , 1985 .
[6] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[7] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[8] Cornelis W. Oosterlee,et al. KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .
[9] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[10] Long Chen. INTRODUCTION TO MULTIGRID METHODS , 2005 .
[11] A. Brandt. Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2 -norm , 1994 .
[12] Leslie George Tham,et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression — Part I: effect of heterogeneity , 2000 .
[13] Jose L. Gracia,et al. Distributive smoothers in multigrid for problems with dominating grad–div operators , 2008, Numer. Linear Algebra Appl..
[14] Cornelis W. Oosterlee,et al. A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods , 2008 .
[15] Barbara Kaltenbacher,et al. Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.
[16] Cornelis W. Oosterlee,et al. Multigrid relaxation methods for systems of saddle point type , 2008 .
[17] Mohamed M. S. Nasser. Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..
[18] Yvan Notay,et al. A Simple and Efficient Segregated Smoother for the Discrete Stokes Equations , 2014, SIAM J. Sci. Comput..
[19] M. Biot. THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .