Toward Space-like Photometric Precision from the Ground with Beam-shaping Diffusers

We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating 62_(-16)^(+26) ppm precision in 30 minute bins on a nearby bright star 16 Cygni A (V = 5.95) using the ARC 3.5 m telescope—within a factor of ~2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V = 11.2) and TRES-3b (V = 12.4), where the residuals bin down to 180_(-41)^(+66) ppm in 30 minute bins for WASP-85-Ab—a factor of ~4 of the precision achieved by the K2 mission on this target—and to 101 ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests demonstrated 137_(-36)^(+64) ppm precision for a K_S = 10.8 star on the 200 inch Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets.

[1]  Conor Sayres,et al.  Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC) facility optical imager for the Apache Point Observatory 3.5m telescope , 2016, Astronomical Telescopes + Instrumentation.

[2]  Roberto Ragazzoni,et al.  Shaping the PSF to nearly top-hat profile: CHEOPS laboratory results , 2014, Astronomical Telescopes and Instrumentation.

[3]  B. J. Fulton,et al.  A NEARBY M STAR WITH THREE TRANSITING SUPER-EARTHS DISCOVERED BY K2 , 2015, 1501.03798.

[4]  P. J. Wheatley,et al.  High-precision photometry by telescope defocussing. I. The transiting planetary system WASP-5 , 2009, 0903.2139.

[5]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[6]  D. J. A. Brown,et al.  STARSPOTS ON WASP-85 , 2015, 1508.07281.

[7]  Henry Ngo,et al.  CHARACTERIZATION OF THE ATMOSPHERE OF THE HOT JUPITER HAT-P-32Ab AND THE M-DWARF COMPANION HAT-P-32B , 2014, 1410.0968.

[8]  William F. Welsh,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES , 2011, 1107.5207.

[9]  V. S. Dhillon,et al.  Atmospheric scintillation in astronomical photometry , 2015, 1506.06921.

[10]  T. Appourchaux,et al.  Asteroseismic inference on rotation, gyrochronology and planetary system dynamics of 16 Cygni , 2014, 1411.1359.

[11]  Zhao Sun,et al.  POSSIBLE TRANSIT TIMING VARIATIONS OF THE TrES-3 PLANETARY SYSTEM , 2013, 1308.2456.

[12]  N. Narita,et al.  DEMONSTRATING HIGH-PRECISION, MULTIBAND TRANSIT PHOTOMETRY WITH MUSCAT: A CASE FOR HAT-P-14B , 2015, 1510.03997.

[13]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[14]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[15]  Nate B. Lust,et al.  ON CORRELATED-NOISE ANALYSES APPLIED TO EXOPLANET LIGHT CURVES , 2016, 1610.01336.

[16]  Jaymie M. Matthews,et al.  A SUPER-EARTH TRANSITING A NAKED-EYE STAR , 2011, 1104.5230.

[17]  R. Owen,et al.  High-Speed Time-Series CCD Photometry with Agile , 2011 .

[18]  Larry D. Petro,et al.  A search for solar-like oscillations in the stars of M67 , 1993 .

[19]  J. Pepper,et al.  RADIAL VELOCITY VARIATIONS OF PHOTOMETRICALLY QUIET, CHROMOSPHERICALLY INACTIVE KEPLER STARS: A LINK BETWEEN RV JITTER AND PHOTOMETRIC FLICKER , 2013, 1310.7152.

[20]  Christoph Baranec,et al.  TWO SMALL PLANETS TRANSITING HD 3167 , 2016, 1607.05248.

[21]  S. Hinkley,et al.  FRIENDS OF HOT JUPITERS. I. A RADIAL VELOCITY SEARCH FOR MASSIVE, LONG-PERIOD COMPANIONS TO CLOSE-IN GAS GIANT PLANETS , 2013, 1312.2954.

[22]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[23]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[24]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[25]  Barry E. Burke,et al.  THE ORTHOGONAL TRANSFER CCD , 1997 .

[26]  M. E. Everett,et al.  A NEW SPECTROSCOPIC AND PHOTOMETRIC ANALYSIS OF THE TRANSITING PLANET SYSTEMS TrES-3 AND TrES-4 , 2008, 0809.4589.

[27]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[28]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[29]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[30]  H. Kjeldsen,et al.  DETECTION OF ℓ = 4 AND ℓ = 5 MODES IN 12 YEARS OF SOLAR VIRGO-SPM DATA—TESTS ON KEPLER OBSERVATIONS OF 16 Cyg A AND B , 2014, 1401.7003.

[31]  V. Kornilov,et al.  Angular correlation of the stellar scintillation for large telescopes , 2012, 1206.2545.

[32]  L. Ramsey,et al.  THE SDSS–HET SURVEY OF KEPLER ECLIPSING BINARIES: SPECTROSCOPIC DYNAMICAL MASSES OF THE KEPLER-16 CIRCUMBINARY PLANET HOSTS , 2012, 1205.0259.

[33]  E. Agol,et al.  APOSTLE: LONGTERM TRANSIT MONITORING AND STABILITY ANALYSIS OF XO-2b , 2013, 1304.5713.

[34]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[35]  Eric Gaidos,et al.  Ground-Based Submillimagnitude CCD Photometry of Bright Stars Using Snapshot Observations , 2011, 1109.1358.

[36]  F. Snik,et al.  OCTOCAM: a fast multi-channel imager and spectrograph proposed for the Gemini Observatory , 2016, Astronomical Telescopes + Instrumentation.

[37]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[38]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[39]  Gordon D. Love,et al.  Conjugate-plane photometry: reducing scintillation in ground-based photometry , 2010 .

[40]  W. C. Bowman,et al.  THERMAL EMISSION OF WASP-14b REVEALED WITH THREE SPITZER ECLIPSES , 2011, 1111.2363.

[41]  Erik Petigura,et al.  SPITZER OBSERVATIONS CONFIRM AND RESCUE THE HABITABLE-ZONE SUPER-EARTH K2-18b FOR FUTURE CHARACTERIZATION , 2016, 1610.07249.

[42]  S. D. Kawaler,et al.  University of Birmingham Asteroseismology of the solar analogs 16 Cyg A and B from Kepler observations , 2012 .

[43]  E. Agol,et al.  EVEREST: PIXEL LEVEL DECORRELATION OF K2 LIGHT CURVES , 2016, 1607.00524.

[44]  L. B. Lucy,et al.  Spectroscopic binaries with circular orbits , 1973 .

[45]  William Jon Merline,et al.  A realistic model for point-sources imaged on array detectors: The model and initial results , 1995 .

[46]  Andrew T. Young,et al.  Photometric error analysis. VI. Confirmation of Reiger's theory of scintillation , 1967 .

[47]  Daniel C. Fabrycky,et al.  RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e , 2010, 1005.4050.

[48]  S. Mahadevan,et al.  Probing potassium in the atmosphere of HD 80606b with tunable filter transit spectrophotometry from the Gran Telescopio Canarias , 2010, 1008.4800.

[49]  L. Observatory,et al.  DETECTION OF KS-BAND THERMAL EMISSION FROM WASP-3b , 2012, 1202.3435.

[50]  David Charbonneau,et al.  TrES-3: A Nearby, Massive, Transiting Hot Jupiter in a 31 Hour Orbit , 2007, 0705.2004.

[51]  Heidelberg,et al.  WASP-8b: CHARACTERIZATION OF A COOL AND ECCENTRIC EXOPLANET WITH SPITZER , 2013, 1303.5468.

[52]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[53]  Lennart Lindegren,et al.  Atmospheric Intensity Scintillation of Stars. III. Effects for Different Telescope Apertures , 1998 .

[54]  John Asher Johnson,et al.  A SMALLER RADIUS FOR THE TRANSITING EXOPLANET WASP-10b , 2008, 0812.0029.

[55]  John L. Tonry,et al.  Photometric Observations Using Orthogonal Transfer CCDs , 2003 .

[56]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[57]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[58]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[59]  John Southworth,et al.  An extremely high photometric precision in ground-based observations of two transits in the WASP-50 planetary system , 2013 .

[60]  R. P. Butler,et al.  Detection of a Neptune-Mass Planet in the ρ1 Cancri System Using the Hobby-Eberly Telescope , 2004, astro-ph/0408585.

[61]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[62]  M. R. Haas,et al.  TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.

[63]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[64]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[65]  S. Villanueva,et al.  THE DEDICATED MONITOR OF EXOTRANSITS (DEMONEX): SEVEN TRANSITS OF XO-4b , 2015, 1511.06402.

[66]  Natasha E. Batalha,et al.  Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy , 2016, 1701.00012.

[67]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[68]  E. Agol,et al.  APOSTLE OBSERVATIONS OF GJ 1214b: SYSTEM PARAMETERS AND EVIDENCE FOR STELLAR ACTIVITY , 2010, 1012.1180.