Combined Notch and Size Effect Modeling in a Local Probabilistic Approach for LCF

[1]  O. Basquin The exponential law of endurance tests , 1910 .

[2]  F. Zwicky,et al.  On the Plasticity of Crystals , 1933 .

[3]  R. W. Karry,et al.  INFLUENCE OF GRAIN SIZE ON FATIGUE NOTCH-SENSITIVITY , 1953 .

[4]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[5]  L. F. Coffin The effect of frequency on the cyclic strain and fatigue behavior of cast rené at 1600° F , 1974, Metallurgical and Materials Transactions B.

[6]  K. Miller,et al.  Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures , 1982 .

[7]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[8]  Didier Sornette,et al.  The Physical Origin of the Coffin-Manson Law in Low-Cycle Fatigue , 1992 .

[9]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[10]  B. Fedelich A stochastic theory for the problem of multiple surface crack coalescence , 1998 .

[11]  Y. Haddad,et al.  Mechanical behaviour of engineering materials , 2000 .

[12]  Soon-Bok Lee,et al.  Stochastic modelling of low-cycle fatigue damage in 316L stainless steel under variable multiaxial loading , 2000 .

[13]  Michael Vormwald,et al.  Ermüdungsfestigkeit Grundlagen für Ingenieure , 2007 .

[14]  Joachim Rösler,et al.  Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites , 2007 .

[15]  Michael Vormwald,et al.  Statistical and geometrical size effects in notched members based on weakest-link and short-crack modelling , 2012 .

[16]  M. V. Klassen-Neklyudova,et al.  Plasticity of Crystals , 2012 .

[17]  Sebastian Schmitz,et al.  Risk estimation for LCF crack initiation , 2013, 1302.2909.

[18]  Oluwamayowa Okeyoyin,et al.  Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Aero Engine Materials , 2013 .

[19]  Hanno Gottschalk,et al.  Probabilistic Analysis of LCF Crack Initiation Life of a Turbine Blade under Thermomechanical Loading , 2013 .

[20]  B. Fedelich,et al.  Experimental and numerical evaluation of fatigue crack initiation and propagation for IN738LC at 850°C , 2013 .

[21]  Hanno Gottschalk,et al.  A probabilistic model for LCF , 2013, 1308.5842.

[22]  Aleksander Karolczuk,et al.  Modelling of stress gradient effect on fatigue life using Weibull based distribution function , 2013 .

[23]  Sebastian Schmitz,et al.  Optimal Reliability in Design for Fatigue Life , 2012, SIAM J. Control. Optim..

[24]  Sebastian Schmitz A local and probabilistic model for low-cycle fatigue: new aspects of structural analysis , 2014 .

[25]  Hanno Gottschalk,et al.  Probabilistic Schmid factors and scatter of low cycle fatigue (LCF) life , 2015 .

[26]  G. Owolabi,et al.  The effects of notch size and material microstructure on the notch sensitivity factor for notched components , 2015 .

[27]  Christian Amann,et al.  Numerically efficient modified Runge–Kutta solver for fatigue crack growth analysis , 2016 .

[28]  Shun-Peng Zhu,et al.  Probabilistic framework for multiaxial LCF assessment under material variability , 2017 .

[29]  Sebastian Schmitz,et al.  Probabilistic LCF Risk Evaluation of a Turbine Vane by Combined Size Effect and Notch Support Modeling , 2017 .