Phase Noise of Distributed Oscillators

In distributed oscillators, a large or infinite number of voltage and current variables that represent an oscillating electromagnetic wave are perturbed by distributed noise sources to result in phase noise. Here we offer an explicit, physically intuitive analysis of the seemingly complex phase-noise process in distributed oscillators. This study, confirmed by experiments, shows how the phase noise varies with the shape and physical nature of the oscillating electromagnetic wave, providing design insights and physical understanding.

[1]  A. Demir Phase noise and timing jitter in oscillators with colored-noise sources , 2002 .

[2]  V. Petviashvili Nonlinear waves and solitons , 1979 .

[3]  Austin Blaquière,et al.  Nonlinear System Analysis , 1966 .

[4]  Mark J. W. Rodwell,et al.  Hyperabrupt‐doped GaAs nonlinear transmission line for picosecond shock‐wave generation , 1989 .

[5]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[6]  M. Lax,et al.  Quantum noise IX: Quantum Fokker-Planck solution for laser noise , 1967 .

[7]  D. Ham,et al.  Electrical soliton oscillator , 2006, IEEE Transactions on Microwave Theory and Techniques.

[8]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[9]  J. Bowers,et al.  Traveling-wave photodetector theory , 1997 .

[10]  Charles W. Therrien,et al.  Probability and Random Processes for Electrical and Computer Engineers , 2011 .

[11]  A. Abidi,et al.  The designer's guide to high-purity oscillators , 2004 .

[12]  Almudena Suarez,et al.  Analytical comparison between time- and frequency-domain techniques for phase-noise analysis , 2002 .

[13]  Donhee Ham,et al.  Standing wave oscillators utilizing wave-adaptive tapered transmission lines , 2004, IEEE Journal of Solid-State Circuits.

[14]  L. Glasser,et al.  Microwave Mode Locking at X Band Using Solid-State , 1978 .

[15]  K. Kurokawa,et al.  An introduction to the theory of microwave circuits , 1969 .

[16]  Almudena Suarez,et al.  Analysis and design of autonomous microwave circuits , 2009 .

[17]  M. Kamegawa,et al.  Impulse compression using soliton effects in a monolithic GaAs circuit , 1991 .

[18]  Franz X. Kärtner,et al.  Analysis of white and f-α noise in oscillators , 1990, Int. J. Circuit Theory Appl..

[19]  B. Kleveland,et al.  Monolithic CMOS distributed amplifier and oscillator , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[20]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[21]  M. Lax Classical Noise. V. Noise in Self-Sustained Oscillators , 1967 .

[22]  Viktor Krozer,et al.  Oscillator Phase Noise: A Geometrical Approach , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[24]  Hermann A. Haus,et al.  Quantum theory of soliton squeezing: a linearized approach , 1990 .

[25]  D. Ham,et al.  Reflection Soliton Oscillator , 2009, IEEE Transactions on Microwave Theory and Techniques.

[26]  Frank O'Mahony,et al.  A 10-GHz global clock distribution using coupled standing-wave oscillators , 2003 .

[27]  F. Kaertner Determination of the correlation spectrum of oscillators with low noise , 1989 .