Free surface flow through rigid porous media - An overview and comparison of formulations

In many applications free surface flow through rigid porous media has to be modeled. Examples refer to coastal engineering applications as well as geotechnical or biomedical applications. Albeit the frequent applications, slight inconsistencies in the formulation of the governing equations can be found in the literature. The main goal of this paper is to identify these differences and provide a quantitative assessment of different approaches. Following a review of the different formulations, simulation results obtained from three alternative formulations are compared with experimental and numerical data. Results obtained by 2D and 3D test cases indicate that the predictive differences returned by the different formulations remain small for most applications, in particular for small porous Reynolds number ReP < 5000. Thus it seems justified to select a formulation that supports an efficient algorithm and coding structure.

[1]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[2]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[3]  Antonia,et al.  A coupled Eulerian-PFEM model for the simulation of overtopping in rockfill dams , 2012 .

[4]  Manuel Manzke Development of a scalable method for the efficient simulation of flows using dynamic goal-oriented local grid-adaptation , 2019 .

[5]  Eugenio Oñate Ibáñez de Navarra,et al.  Theme B: simulation of the behavior of prototypes of rockfill dams during overtopping scenarios: seepage evolution and beginning of failure , 2011 .

[6]  Thomas Rung,et al.  Analysis of non-conservative interpolation techniques in overset grid finite-volume methods , 2017 .

[7]  M.R.A. van Gent,et al.  Wave Interaction with Permeable Coastal Structures , 1995 .

[8]  Manuel del Jesus,et al.  Three-dimensional interaction of waves and porous coastal structures: Part I: Numerical model formulation , 2012 .

[9]  Gretar Tryggvason,et al.  Direct numerical simulations of gas/liquid multiphase flows , 2011 .

[10]  B. Mirjalili,et al.  Interface-capturing methods for two-phase flows : An overview and recent developments , 2017 .

[11]  Tsutomu Sakakiyama,et al.  A numerical model for wave motions and turbulence flows in front of a composite breakwater , 2002 .

[12]  Sergey Yakubov,et al.  Experience using pressure-based CFD methods for Euler–Euler simulations of cavitating flows , 2015 .

[13]  O. Ubbink Numerical prediction of two fluid systems with sharp interfaces , 1997 .

[14]  E. Oñate,et al.  Finite Element Modeling of Free Surface Flow in Variable Porosity Media , 2015 .

[15]  M.R.A. Van Gent Formulae to describe porous flow , 1992 .

[16]  Joel H. Ferziger,et al.  Numerische Strömungsmechanik , 2020 .

[17]  Ryosuke Uzuoka,et al.  Dynamics of unsaturated poroelastic solids at finite strain , 2012 .

[18]  Hsiang Wang,et al.  Gravity waves over porous bottoms , 1991 .

[19]  Qiang Zhang,et al.  Front tracking in two and three dimensions , 1998 .

[20]  Kuang-An Chang,et al.  Numerical Modeling of Wave Interaction with Porous Structures , 2001 .

[21]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[22]  Pengzhi Lin,et al.  A Numerical Model for Breaking Waves: The Volume of Fluid Method. , 1997 .

[23]  Marcelo J.S. de Lemos,et al.  Recent Mathematical Models for Turbulent Flow in Saturated Rigid Porous Media , 2001 .

[24]  B. Wood,et al.  Turbulence in Porous Media , 2019 .

[25]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[26]  S. Ergun Fluid flow through packed columns , 1952 .

[27]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .