Ribbon tile invariants
暂无分享,去创建一个
[1] Dennis E. White,et al. A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.
[2] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[3] G. B. Robinson,et al. Representation theory of the symmetric group , 1961 .
[4] J. Propp,et al. Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.
[5] Richard W. Kenyon. A Note on Tiling with Integer-Sided Rectangles , 1996, J. Comb. Theory, Ser. A.
[6] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .
[7] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[8] Igor Pak,et al. On Tilings by Ribbon Tetrominoes , 1999, J. Comb. Theory, Ser. A.
[9] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[10] Greg Kuperberg,et al. Alternating-Sign Matrices and Domino Tilings (Part II) , 1992 .
[11] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[12] J. Propp,et al. Alternating sign matrices and domino tilings , 1991, math/9201305.
[13] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[14] M. Fisher,et al. Dimer problem in statistical mechanics-an exact result , 1961 .
[15] Michelle L. Wachs,et al. Generalized quotients in Coxeter groups , 1988 .
[16] James Propp. A pedestrian approach to a method of Conway, or, a tale of two cities , 1997 .
[17] W. Thurston. Conway's tiling groups , 1990 .