Mixed integer estimation and validation for next generation GNSS

The coming decade will bring a proliferation of Global Navigation Satellite Systems (GNSS) that are likely to revolutionize society in the same way as the mobile phone has done. The promise of a broader multi-frequency, multi-signal GNSS “system of systems” has the potential of enabling a much wider range of demanding applications compared to the current GPS-only situation. In order to achieve the highest accuracies onemust exploit the unique properties of the received carrier signals.These properties include themulti-satellite system tracking, themm-levelmeasurement precision, the frequency diversity, and the integer ambiguities of the carrier phases. Successful exploitation of these properties results in an accuracy improvement of the estimated GNSS parameters of two orders of magnitude.The theory that underpins this ultraprecise GNSS parameter estimation and validation is the theory of integer inference. This theory is the topic of the present chapter.

[1]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[2]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more , 2007 .

[3]  Ramon F. Hanssen,et al.  Ambiguity resolution for permanent scatterer interferometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Keck Voon Ling,et al.  Real-time Attitude Determination for Microsatellite by Lambda Method Combined with Kalman Filtering , 2004 .

[5]  H. Hsu,et al.  A new approach to GPS ambiguity decorrelation , 1999 .

[6]  Sien-Chong Wu,et al.  Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters With GPS Bias Fixing , 2006 .

[7]  Sandra Verhagen,et al.  The GNSS ambiguity ratio-test revisited: a better way of using it , 2009 .

[8]  Peter Teunissen,et al.  A new carrier phase ambiguity estimation for GNSS attitude determination systems. , 2003 .

[9]  Thomas Hobiger,et al.  Integer phase ambiguity estimation in next-generation geodetic Very Long Baseline Interferometry , 2009 .

[10]  Henrik E. Thomsen Evaluation of Upper and Lower Bounds on the Success Probability , 2000 .

[11]  Peter Teunissen,et al.  GNSS ambiguity resolution with optimally controlled failure-rate , 2005 .

[12]  Peter Teunissen The parameter distributions of the integer GPS model , 2002 .

[13]  Peter Teunissen,et al.  Integer aperture GNSS ambiguity resolution , 2003 .

[14]  Xiaoli Ding,et al.  Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods , 2007 .

[15]  Sandra Verhagen,et al.  New Global Navigation Satellite System Ambiguity Resolution Method Compared to Existing Approaches , 2006 .

[16]  S. Verhagen On the approximation of the integer least-squares success rate: which lower or upper bound to use? , 2003 .

[17]  P. Teunissen,et al.  The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans , 1997 .

[18]  Stephen P. Boyd,et al.  Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..

[19]  E. Grafarend Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm , 2000, GPS Solutions.

[20]  Peiliang Xu Random simulation and GPS decorrelation , 2001 .

[21]  Sandra Verhagen,et al.  Instanteneous Multi-Baseline Ambiguity Resolution with Constraints , 2008 .

[22]  Peiliang Xu,et al.  Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linear models , 2006, IEEE Transactions on Information Theory.

[23]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[24]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[25]  Peter Teunissen,et al.  Least-squares prediction in linear models with integer unknowns , 2007 .

[26]  Erik W. Grafarend,et al.  Geodetic applications of stochastic processes , 1976 .

[27]  Peter Teunissen ADOP based upper bounds for the bootstrapped and the least squares ambiguity success. , 2000 .

[28]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[29]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[30]  Peter Teunissen,et al.  The invertible GPS ambiguity transformations , 1995 .

[31]  W. Baarda,et al.  A testing procedure for use in geodetic networks. , 1968 .

[32]  C.C.J.M. Tiberius,et al.  Computational Aspects of the LAMBDA Method for GPS Ambiguity Resolution , 1996 .

[33]  Peter Teunissen,et al.  Multiple Models — Fixed, Switching, Interacting , 2004 .

[34]  Sandra Verhagen,et al.  Performance comparison of the BIE estimator with the float and fixed GNSS ambiguity estimators , 2005 .

[35]  Peter Teunissen,et al.  Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping , 2007 .

[36]  Gabriele Giorgi,et al.  A Search and Shrink Approach for the Baseline Constrained LAMBDA Method: Experimental Results , 2008 .

[37]  Jon Glenn Gjevestad Svendsen,et al.  Some properties of decorrelation techniques in the ambiguity space , 2006 .

[38]  P. Teunissen Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .

[39]  Brigitte Gundlich,et al.  Confidence regions for GPS baselines by Bayesian statistics , 2002 .

[40]  Jan Wendel,et al.  A Modified Lambda Method for Ambiguity Resolution in the Presence of Position Domain Constraints , 2005 .

[41]  Sandra Verhagen,et al.  PDF evaluation of the integer ambiguity residuals , 2004 .

[42]  Peter Teunissen,et al.  On the integer normal distribution of the GPS ambiguities. , 1998 .

[43]  Sandra Verhagen,et al.  GNSS carrier phase ambiguity resolution: challenges and open problems , 2009 .

[44]  X. Chang,et al.  MLAMBDA: a modified LAMBDA method for integer least-squares estimation , 2005 .

[45]  Peter Teunissen,et al.  Theory of integer equivariant estimation with application to GNSS , 2003 .

[46]  Christian Tiberius,et al.  Integer Ambiguity Estimation with the Lambda Method , 1996 .

[47]  Peter Teunissen,et al.  The probability distribution of the GPS baseline for a class of integer ambiguity estimators , 1999 .

[48]  S. Verhagen ON THE RELIABILITY OF INTEGER AMBIGUITY RESOLUTION , 2005 .

[49]  G. Strang,et al.  Linear Algebra, Geodesy, and GPS , 1997 .

[50]  Tim Springer,et al.  New IGS Station and Satellite Clock Combination , 2001, GPS Solutions.

[51]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[52]  Duncan B. Cox,et al.  Integration of LAMBDA Ambiguity Resolution with Kalman Filter for Relative Navigation of Spacecraft , 2000 .

[53]  N. Kubo,et al.  Performance evaluation of GPS augmentation using Quasi-Zenith Satellite System , 2004, IEEE Transactions on Aerospace and Electronic Systems.