Towards an Adaptive CMA-ES Configurator
暂无分享,去创建一个
[1] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[2] Hao Wang,et al. Mirrored orthogonal sampling with pairwise selection in evolution strategies , 2014, SAC.
[3] Antonio Bolufé Röhler,et al. Evolution strategies with thresheld convergence , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).
[4] Raymond Ros,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .
[5] Olivier Teytaud,et al. Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies , 2005, Artificial Evolution.
[6] Hao Wang,et al. Algorithm configuration data mining for CMA evolution strategies , 2017, GECCO.
[7] Anne Auger,et al. Mirrored sampling in evolution strategies with weighted recombination , 2011, GECCO '11.
[8] Dirk V. Arnold,et al. Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[9] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[10] Anne Auger,et al. Mirrored Sampling and Sequential Selection for Evolution Strategies , 2010, PPSN.
[11] Nikolaus Hansen,et al. CMA-ES with Two-Point Step-Size Adaptation , 2008, ArXiv.
[12] Nikolaus Hansen,et al. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.
[13] Hao Wang,et al. Evolving the structure of Evolution Strategies , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).
[14] Anne Auger,et al. COCO: Performance Assessment , 2016, ArXiv.