Weighted central limit theorems for central values of $L$-functions
暂无分享,去创建一个
Kyle Pratt | Hung M. Bui | Stephen Lester | Natalie Evans | N. Evans | Kyle Pratt | H. Bui | S. Lester
[1] D. Rohrlich,et al. OnL-functions of elliptic curves and anticyclotomic towers , 1984 .
[2] Alessandro Fazzari. A WEIGHTED CENTRAL LIMIT THEOREM FOR log|ζ(1/2+it)| , 2019 .
[3] Alessandro Fazzari,et al. Weighted value distributions of the Riemann zeta function on the critical line , 2021, 2101.08036.
[4] On the partition function of the Riemann zeta function, and the Fyodorov--Hiary--Keating conjecture , 2019, 1906.05783.
[5] SHARP UPPER BOUNDS FOR FRACTIONAL MOMENTS OF THE RIEMANN ZETA FUNCTION , 2019, The Quarterly Journal of Mathematics.
[6] Peter Sarnak,et al. Dirichlet L-functions at the central point , 1999 .
[7] The fourth moment of Dirichlet L-functions , 2005, math/0507150.
[8] Peter Sarnak,et al. Low lying zeros of families of L-functions , 1999, math/9901141.
[9] J. Vaaler. SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .
[10] Y. Fyodorov,et al. Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. , 2012, Physical review letters.
[11] Chantal David,et al. Nonvanishing for cubic L-functions , 2021, Forum of Mathematics, Sigma.
[12] K. Soundararajan,et al. Nonvanishing of quadratic Dirichlet L-functions at s=1/2 , 1999 .
[13] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[14] Vorrapan Chandee. Explicit Upper Bounds for L-functions on the critical line , 2009, 0906.4177.
[15] Signs of Fourier coefficients of half-integral weight modular forms , 2019, 1903.05811.
[16] E. Kowalski,et al. The second moment theory of families of L-functions , 2018, 1804.01450.
[17] H. Davenport. Multiplicative Number Theory , 1967 .
[18] J. Najnudel. On the extreme values of the Riemann zeta function on random intervals of the critical line , 2016, 1611.05562.
[19] Nina C Snaith,et al. Random Matrix Theory and L-Functions at s= 1/2 , 2000 .
[20] K. Soundararajan,et al. Lower bounds for moments of zeta and L$L$ ‐functions revisited , 2020, Mathematika.
[21] G. Chinta. Analytic ranks of elliptic curves over cyclotomic fields , 2002 .
[22] The fourth moment of Dirichlet L-functions , 2006, math/0610335.
[23] Bob Hough. The distribution of the logarithm in an orthogonal and a symplectic family of $L$-functions , 2011, 1109.1783.
[24] Yan V. Fyodorov,et al. Freezing transitions and extreme values: random matrix theory, and disordered landscapes , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[25] P. Bourgade,et al. Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line , 2016, Communications on Pure and Applied Mathematics.
[26] A. Zaharescu,et al. Breaking the 1/2-barrier for the twisted second moment of Dirichlet L-functions , 2020 .
[27] A. Saha,et al. Explicit refinements of Böcherer's conjecture for Siegel modular forms of squarefree level , 2015, Journal of the Mathematical Society of Japan.
[28] V. Bykovskii. A trace formula for the scalar product of Hecke series and its applications , 1998 .
[29] H. M. Bui,et al. On the mean values of Dirichlet L‐functions , 2006, math/0607199.
[30] V. Blomer,et al. Simultaneous equidistribution of toric periods and fractional moments of $L$-functions , 2020, Journal of the European Mathematical Society.
[31] J. Keating,et al. A hybrid Euler-Hadamard product for the Riemann zeta function , 2007 .
[32] K. Soundararajan,et al. Moments and distribution of central L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-values of quadr , 2014, Inventiones mathematicae.
[33] Alexandra Florea,et al. The Ratios Conjecture and upper bounds for negative moments of $L$-functions over function fields , 2021, 2109.10396.
[34] Raphael Zacharias. Mollification of the fourth moment of Dirichlet $L$-functions , 2016, Acta Arithmetica.
[35] Allysa Lumley,et al. Selberg’s central limit theorem for quadratic dirichlet L-functions over function fields , 2021, Monatshefte für Mathematik.