Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≈4keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≈790atm) in the inner shell, strict concentricity requirements on the two shells (<3μm), development of nanoporous (<100nm cell size) low-density (<100mg∕cc) metallic foams for structural support of the inner shell and hydrodynamic instability mitigation, and effective control of hydrodynamic instabilities on the high-Atwood-number interface between th...

[1]  Peter A. Amendt,et al.  Gas‐filled targets for large scale‐length plasma interaction experiments on Nova , 1995 .

[2]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[3]  J. A. Paisner,et al.  The National Ignition Facility Project , 1994 .

[4]  R. Hibbard,et al.  Precision Manufacturing of Inertial Confinement Fusion Double Shell Laser Targets for OMEGA , 2004 .

[5]  Erlan S. Bliss,et al.  Nova experimental facility (invited) , 1986 .

[6]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[7]  Jay D. Salmonson,et al.  Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .

[8]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[9]  Robert L. Kauffman,et al.  Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .

[10]  Peter A. Amendt,et al.  A simple time-dependent analytic model of the P2 asymmetry in cylindrical hohlraums , 1999 .

[11]  R. Craxton,et al.  Indirect‐drive radiation uniformity in tetrahedral hohlraums , 1996 .

[12]  Peter A. Amendt,et al.  Indirect-Drive Noncryogenic Double-Shell Ignition Targets for the National Ignition Facility: Design and Analysis , 2001 .

[13]  Turner,et al.  Modeling and interpretation of Nova's symmetry scaling data base. , 1994, Physical review letters.

[14]  P. Amendt Bell-Plesset effects for an accelerating interface with contiguous density gradients , 2006 .

[15]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[16]  O. Landen,et al.  First hohlraum drive studies on the National Ignition Facilitya) , 2006 .

[17]  K. A. Klare,et al.  INERTIAL CONFINEMENT FUSION WITH TETRAHEDRAL HOHLRAUMS AT OMEGA , 1999 .

[18]  Peter A. Amendt,et al.  Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs , 2004 .

[19]  V Yu Glebov,et al.  Hohlraum-driven ignitionlike double-shell implosions on the omega laser facility. , 2005, Physical review letters.

[20]  C. Tang Saturation and Spectral Characteristics of the Stokes Emission in the Stimulated Brillouin Process , 1966 .

[21]  V. Lykov,et al.  Computational optimization of indirect-driven targets for ignition on the Iskra-6 laser facility , 2005 .

[22]  O. Landen,et al.  Using Laser Entrance Hole Shields to Increase Coupling Efficiency in Indirect Drive Ignition Targets for the National Ignition Facility (NIF) , 2005 .

[23]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[24]  E. Williams,et al.  New findings on the control of filamentation of intense laser beams propagating in underdense plasma , 2005 .

[25]  Peter A. Amendt,et al.  National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography , 2001 .

[26]  A. B. Langdon,et al.  Theory and three‐dimensional simulation of light filamentation in laser‐produced plasma , 1993 .