Inexact Proximal-Point Penalty Methods for Constrained Non-Convex Optimization

In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $\varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $\tilde O(\varepsilon^{-5/2})$ to produce an $\varepsilon$-stationary point under the Slater's condition. When the constraint functions are non-convex, the complexity becomes $\tilde O(\varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $\tilde O(\varepsilon^{-4})$ if a feasible initial solution is available.

[1]  Saeed Ghadimi,et al.  Accelerated gradient methods for nonconvex nonlinear and stochastic programming , 2013, Mathematical Programming.

[2]  Preetam Nandy,et al.  Optimal Convergence for Stochastic Optimization with Multiple Expectation Constraints , 2019, 1906.03401.

[3]  Yangyang Xu,et al.  Primal-Dual Stochastic Gradient Method for Convex Programs with Many Functional Constraints , 2018, SIAM J. Optim..

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[6]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[7]  Volkan Cevher,et al.  Almost surely constrained convex optimization , 2019, ICML.

[8]  V. Cevher,et al.  A Primal-Dual Algorithmic Framework for Constrained Convex Minimization , 2014, 1406.5403.

[9]  Ya-Xiang Yuan,et al.  On the complexity of an augmented Lagrangian method for nonconvex optimization , 2019, IMA Journal of Numerical Analysis.

[10]  Jefferson G. Melo,et al.  Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems , 2017, 1702.01850.

[11]  Zeyuan Allen Zhu,et al.  Variance Reduction for Faster Non-Convex Optimization , 2016, ICML.

[12]  Ya-Xiang Yuan,et al.  A recursive quadratic programming algorithm that uses differentiable exact penalty functions , 1986, Math. Program..

[13]  Dmitriy Drusvyatskiy,et al.  Stochastic subgradient method converges at the rate O(k-1/4) on weakly convex functions , 2018, ArXiv.

[14]  Xiaohan Wei,et al.  Online Convex Optimization with Stochastic Constraints , 2017, NIPS.

[15]  Alexander J. Smola,et al.  Fast incremental method for smooth nonconvex optimization , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[16]  Guanghui Lan,et al.  Proximal Point Methods for Optimization with Nonconvex Functional Constraints , 2019, ArXiv.

[17]  Quoc Tran-Dinh,et al.  Proximal alternating penalty algorithms for nonsmooth constrained convex optimization , 2017, Computational Optimization and Applications.

[18]  Jefferson G. Melo,et al.  Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems , 2020, 2006.08048.

[19]  Zongben Xu,et al.  Convergence of multi-block Bregman ADMM for nonconvex composite problems , 2015, Science China Information Sciences.

[20]  Weiwei Kong,et al.  Complexity of a Quadratic Penalty Accelerated Inexact Proximal Point Method for Solving Linearly Constrained Nonconvex Composite Programs , 2018, SIAM J. Optim..

[21]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[22]  J. Lee,et al.  Convergence to Second-Order Stationarity for Constrained Non-Convex Optimization , 2018, 1810.02024.

[23]  Mingyi Hong,et al.  Decomposing Linearly Constrained Nonconvex Problems by a Proximal Primal Dual Approach: Algorithms, Convergence, and Applications , 2016, ArXiv.

[24]  Yurii Nesterov,et al.  Barrier subgradient method , 2011, Math. Program..

[25]  Renato D. C. Monteiro,et al.  Iteration-complexity of first-order penalty methods for convex programming , 2013, Math. Program..

[26]  Damek Davis,et al.  Complexity of finding near-stationary points of convex functions stochastically , 2018, 1802.08556.

[27]  Niao He,et al.  On the Convergence Rate of Stochastic Mirror Descent for Nonsmooth Nonconvex Optimization , 2018, 1806.04781.

[28]  Enhong Chen,et al.  Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions , 2018, ICLR.

[29]  Lin Xiao,et al.  An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization , 2014, Computational Optimization and Applications.

[30]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[31]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[32]  Bo Yang,et al.  SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems , 2019, ArXiv.

[33]  Mingrui Liu,et al.  Solving Weakly-Convex-Weakly-Concave Saddle-Point Problems as Successive Strongly Monotone Variational Inequalities , 2018 .

[34]  G. McCormick,et al.  The Slacked Unconstrained Minimization Technique for Convex Programming , 1967 .

[35]  L. Grippo,et al.  An exact penalty function method with global convergence properties for nonlinear programming problems , 1986, Math. Program..

[36]  Xiaojun Chen,et al.  An exact penalty approach for optimization with nonnegative orthogonality constraints , 2019, Mathematical Programming.

[37]  Stephen J. Wright,et al.  Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints , 2019, Journal of Scientific Computing.

[38]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[39]  Volkan Cevher,et al.  An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints , 2019, NeurIPS.

[40]  Stephen J. Wright,et al.  A log-barrier Newton-CG method for bound constrained optimization with complexity guarantees , 2019, IMA Journal of Numerical Analysis.

[41]  Tianbao Yang,et al.  Level-Set Methods for Finite-Sum Constrained Convex Optimization , 2018, ICML.

[42]  Damek Davis,et al.  Proximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems , 2017, SIAM J. Optim..

[43]  Mingyi Hong,et al.  Perturbed proximal primal–dual algorithm for nonconvex nonsmooth optimization , 2019, Math. Program..

[44]  Saeed Ghadimi,et al.  Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming , 2013, SIAM J. Optim..

[45]  Mikhail V. Solodov,et al.  Local Convergence of Exact and Inexact Augmented Lagrangian Methods under the Second-Order Sufficient Optimality Condition , 2012, SIAM J. Optim..

[46]  Nicholas I. M. Gould,et al.  On the Convergence of Successive Linear-Quadratic Programming Algorithms , 2005, SIAM J. Optim..

[47]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[48]  Zeyuan Allen-Zhu,et al.  Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter , 2017, ICML.

[49]  E. G. Birgin,et al.  Complexity and performance of an Augmented Lagrangian algorithm , 2019, Optim. Methods Softw..

[50]  Jefferson G. Melo,et al.  Iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian method based on the classical Lagrangian function and a full Lagrange multiplier update , 2020 .

[51]  Simon Lacoste-Julien,et al.  Convergence Rate of Frank-Wolfe for Non-Convex Objectives , 2016, ArXiv.

[52]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[53]  Mingyi Hong,et al.  Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization , 2018, ArXiv.

[54]  Guanghui Lan,et al.  Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization , 2019 .

[55]  Tianbao Yang,et al.  Proximally Constrained Methods for Weakly Convex Optimization with Weakly Convex Constraints. , 2019 .

[56]  L. Grippo,et al.  A Continuously Differentiable Exact Penalty Function for Nonlinear Programming Problems with Inequality Constraints , 1985 .

[57]  Guanghui Lan,et al.  Algorithms for stochastic optimization with expectation constraints , 2016, 1604.03887.

[58]  Yinyu Ye,et al.  Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary , 2017, Math. Program..

[59]  Nicholas I. M. Gould,et al.  On the Evaluation Complexity of Composite Function Minimization with Applications to Nonconvex Nonlinear Programming , 2011, SIAM J. Optim..

[60]  Torkel Glad,et al.  A multiplier method with automatic limitation of penalty growth , 1979, Math. Program..

[61]  Nicholas I. M. Gould,et al.  On the complexity of finding first-order critical points in constrained nonlinear optimization , 2014, Math. Program..

[62]  Guanghui Lan,et al.  Accelerated Stochastic Algorithms for Nonconvex Finite-sum and Multi-block Optimization , 2018, 1805.05411.

[63]  Jinfeng Yi,et al.  Stochastic Gradient Descent with Only One Projection , 2012, NIPS.

[64]  Shiqian Ma,et al.  Penalty methods with stochastic approximation for stochastic nonlinear programming , 2013, Math. Comput..

[65]  Yangyang Xu,et al.  Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming , 2017, Mathematical Programming.

[66]  Nicholas I. M. Gould,et al.  Adaptive augmented Lagrangian methods: algorithms and practical numerical experience , 2014, Optim. Methods Softw..

[67]  Jefferson G. Melo,et al.  Iteration-complexity of a proximal augmented Lagrangian method for solving nonconvex composite optimization problems with nonlinear convex constraints , 2020, 2008.07080.

[68]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[69]  Volkan Cevher,et al.  A single-phase, proximal path-following framework , 2016, Math. Oper. Res..

[70]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[71]  Stephen J. Wright On the convergence of the Newton/log-barrier method , 2001, Math. Program..

[72]  Alexander J. Smola,et al.  Stochastic Variance Reduction for Nonconvex Optimization , 2016, ICML.

[73]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[74]  M. Hestenes Multiplier and gradient methods , 1969 .

[75]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[76]  Jiawei Zhang,et al.  A Global Dual Error Bound and Its Application to the Analysis of Linearly Constrained Nonconvex Optimization , 2020, SIAM J. Optim..

[77]  Ying Cui,et al.  Clustering by Orthogonal NMF Model and Non-Convex Penalty Optimization , 2019, ArXiv.

[78]  Tianbao Yang,et al.  A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates , 2016, ICML.

[79]  Hong-Kun Xu,et al.  Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems , 2014, 1410.8625.

[80]  Zaïd Harchaoui,et al.  Catalyst for Gradient-based Nonconvex Optimization , 2018, AISTATS.

[81]  D. Drusvyatskiy The proximal point method revisited , 2017, 1712.06038.

[82]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[83]  Mingrui Liu,et al.  Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning , 2018, ArXiv.

[84]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[85]  Hao Yu,et al.  A Simple Parallel Algorithm with an O(1/t) Convergence Rate for General Convex Programs , 2015, SIAM J. Optim..

[86]  Nicholas I. M. Gould,et al.  Corrigendum: On the complexity of finding first-order critical points in constrained nonlinear optimization , 2017, Math. Program..

[87]  Ion Necoara,et al.  Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming , 2015, Optim. Methods Softw..

[88]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[89]  Gabriel Haeser,et al.  Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points , 2018, Comput. Optim. Appl..

[90]  N. Gould On the convegence of a sequential penalty function method for constrained minimization , 1989 .

[91]  Jianjun Yuan,et al.  Online Convex Optimization for Cumulative Constraints , 2018, NeurIPS.

[92]  Alexander Gasnikov,et al.  Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints , 2017, 1710.06612.

[93]  Yangyang Xu,et al.  Augmented Lagrangian based first-order methods for convex and nonconvex programs: nonergodic convergence and iteration complexity , 2020, ArXiv.

[94]  Michael P. Friedlander,et al.  A Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization , 2005, SIAM J. Optim..

[95]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[96]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[97]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[98]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[99]  Songtao Lu,et al.  Rate-improved inexact augmented Lagrangian method for constrained nonconvex optimization , 2020, AISTATS.

[100]  Dmitriy Drusvyatskiy,et al.  Efficiency of minimizing compositions of convex functions and smooth maps , 2016, Math. Program..

[101]  Qing Ling,et al.  Solving Non-smooth Constrained Programs with Lower Complexity than \mathcal{O}(1/\varepsilon): A Primal-Dual Homotopy Smoothing Approach , 2018, NeurIPS.

[102]  Yangyang Xu,et al.  First-order methods for constrained convex programming based on linearized augmented Lagrangian function , 2017, INFORMS J. Optim..

[103]  Volkan Cevher,et al.  Composite self-concordant minimization , 2013, J. Mach. Learn. Res..

[104]  Dmitriy Drusvyatskiy,et al.  Stochastic model-based minimization of weakly convex functions , 2018, SIAM J. Optim..

[105]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .

[106]  Volkan Cevher,et al.  An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization , 2013, SIAM J. Optim..

[107]  Volkan Cevher,et al.  A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions , 2013, ICML.

[108]  Jefferson G. Melo,et al.  Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs , 2017, 1705.07229.

[109]  Zhi-Quan Luo,et al.  A Proximal Alternating Direction Method of Multiplier for Linearly Constrained Nonconvex Minimization , 2018, SIAM J. Optim..

[110]  Xiaohan Wei,et al.  Primal-Dual Frank-Wolfe for Constrained Stochastic Programs with Convex and Non-convex Objectives , 2018 .

[111]  Rong Jin,et al.  O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions , 2013, ICML.

[112]  Olvi L. Mangasarian,et al.  Exact penalty functions in nonlinear programming , 1979, Math. Program..