A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids

We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection-diffusion-reaction equations in two or three space dimensions. We discretize the time evolution, convection, reaction, and sources terms on a given grid, which can be nonmatching and can contain nonconvex elements, by means of the cell-centered finite volume method. To discretize the diffusion term, we construct a conforming simplicial mesh with the vertices given by the original grid and use the finite element method. In this way, the scheme is fully consistent and the discrete solution is naturally continuous across the interfaces between the subdomains with nonmatching grids, without introducing any supplementary equations and unknowns or using any interpolation of the discrete solutions at the interfaces. We allow for general inhomogeneous and anisotropic diffusion-dispersion tensors and use the local Peclet upstream weighting in order to only add the minimal numerical diffusion necessary to avoid spurious oscillations in the convection-dominated case. The scheme is robust, efficient, locally conservative, and satisfies the discrete maximum principle under some conditions on the mesh and the diffusion tensor. We prove its convergence using a priori estimates and the Kolmogorov relative compactness theorem and illustrate its behavior on a numerical experiment.

[1]  Carsten Ebmeyer,et al.  Error Estimates for a Class of Degenerate Parabolic Equations , 1998 .

[2]  Martin Vohralík,et al.  A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids , 2011 .

[3]  Noel J. Walkington,et al.  Optimal rates of convergence for degenerate parabolic problems in two dimensions , 1996 .

[4]  Frédéric Nataf,et al.  A new cement to glue non-conforming grids with Robin interface conditions: The finite volume case , 2007, Numerische Mathematik.

[5]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.

[6]  John W. Barrett,et al.  Finite Element Approximation of the Transport of Reactive Solutes in Porous Media. Part 1: Error Estimates for Nonequilibrium Adsorption Processes , 1997 .

[7]  Robert Eymard,et al.  Mathematical and Numerical Properties of Control-Volumel Finite-Element Scheme for Reservoir Simulation , 1994 .

[8]  Felix Otto,et al.  Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: uniqueness of weak solutions , 2000 .

[9]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[10]  B. Joe Delaunay Triangular Meshes in Convex Polygons , 1986 .

[11]  John D. Towers,et al.  Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient , 2002 .

[12]  Gerald Warnecke,et al.  Error Estimates for a Combined Finite Volume--Finite Element Method for Nonlinear Convection--Diffusion Problems , 1999 .

[13]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[14]  Noel J. Walkington,et al.  Co-volume methods for degenerate parabolic problems , 1993 .

[15]  Frédéric Nataf,et al.  A new Cement to Glue non-conforming Grids with Robin interface conditions: the finite element case , 2002 .

[16]  Philippe Angot,et al.  Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .

[17]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[18]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[19]  Alain Dervieux,et al.  Computation of unsteady flows with mixed finite volume/finite element upwind methods , 1998 .

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  Martin Vohralík,et al.  Numerical methods for nonlinear elliptic and parabolic equations. Application to flow problems in porous and fractured media. (Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés) , 2004 .

[22]  Mario Putti,et al.  Finite Element Approximation of the Diffusion Operator on Tetrahedra , 1998, SIAM J. Sci. Comput..

[23]  Martin Vohralík,et al.  A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.

[24]  Robert Eymard,et al.  The finite volume method for Richards equation , 1999 .

[25]  Frédéric Nataf,et al.  Finite Volume Methods on Non-Matching Grids with Arbitrary Interface Conditions and Highly Heterogeneous Media , 2005 .

[26]  Frank W. Letniowski,et al.  Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator , 1992, SIAM J. Sci. Comput..

[27]  JOHN W. BARRETT,et al.  FINITE ELEMENT APPROXIMATION OF THE TRANSPORT OF REACTIVE SOLUTES IN POROUS MEDIA. PART II: ERROR ESTIMATES FOR EQUILIBRIUM ADSORPTION PROCESSES∗ , 1997 .

[28]  Jozef Kacur,et al.  Solution of Degenerate Convection-Diffusion Problems by the Method of Characteristics , 2001, SIAM J. Numer. Anal..

[29]  Thierry Gallouët,et al.  Finite volumes and nonlinear diffusion equations , 1998 .

[30]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[31]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[32]  M. Lukáčová-Medvid'ová,et al.  On the Convergence of a Combined Finite Volume{Finite Element Method for Nonlinear Convection{Diffusion Problems , 1997 .

[33]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[34]  Florence Hubert,et al.  The Lions domain decomposition algorithm on non‐matching cell‐centred finite volume meshes , 2004 .

[35]  Long Chen FINITE VOLUME METHODS , 2011 .

[36]  M. Lukáčová-Medvid'ová,et al.  Combined finite element-finite volume solution of compressible flow , 1995 .