Principal Curvature-Based Region Detector for Object Recognition

This paper presents a new structure-based interest region detector called principal curvature-based regions (PCBR) which we use for object class recognition. The PCBR interest operator detects stable watershed regions within the multi-scale principal curvature image. To detect robust watershed regions, we "clean" a principal curvature image by combining a grayscale morphological close with our new "eigenvectorflow" hysteresis threshold. Robustness across scales is achieved by selecting the maximally stable regions across consecutive scales. PCBR typically detects distinctive patterns distributed evenly on the objects and it shows significant robustness to local intensity perturbations and intra-class variations. We evaluate PCBR both qualitatively (through visual inspection) and quantitatively (by measuring repeatability and classification accuracy in real-world object-class recognition problems). Experiments on different benchmark datasets show that PCBR is comparable or superior to state-of-art detectors for both feature matching and object recognition. Moreover, we demonstrate the application of PCBR to symmetry detection.

[1]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[2]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[3]  Paul Beaudet,et al.  Rotationally invariant image operators , 1978 .

[4]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  G. Medioni,et al.  Corner detection and curve representation using cubic B-splines , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[8]  Gérard G. Medioni,et al.  Corner detection and curve representation using cubic B-splines , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  Michael Werman,et al.  Ridge's corner detection and correspondence , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[11]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[12]  Farzin Mokhtarian,et al.  Robust Image Corner Detection Through Curvature Scale Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Carsten Steger,et al.  An Unbiased Detector of Curvilinear Structures , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[16]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[17]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[18]  Peter Auer,et al.  Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.

[19]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[20]  T. Tuytelaars,et al.  Matching Widely Separated Views Based on Affine Invariant Regions , 2004, International Journal of Computer Vision.

[21]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[22]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[23]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[24]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[25]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[26]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[27]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[28]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[29]  Eibe Frank,et al.  Logistic Model Trees , 2003, Machine Learning.

[30]  Rachid Deriche,et al.  A computational approach for corner and vertex detection , 1993, International Journal of Computer Vision.

[31]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[32]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.