Hypothesis testing of process capability index Cpk from the perspective of generalized fiducial inference

[1]  Jason Flannick,et al.  Evaluating empirical bounds on complex disease genetic architecture , 2013, Nature Genetics.

[2]  Jan Hannig,et al.  Generalized Fiducial Inference for Binary Logistic Item Response Models , 2016, Psychometrika.

[3]  D. Owen,et al.  On the distributions of the estimated process capability indices , 1989 .

[4]  Paul L. Goethals,et al.  Integrating Customer Perception into Process Capability Measures , 2016, Qual. Reliab. Eng. Int..

[5]  Damian V. Wandler,et al.  A fiducial approach to multiple comparisons , 2012 .

[6]  Andy K. L. Chiang A Simple General Method for Constructing Confidence Intervals for Functions of Variance Components , 2001, Technometrics.

[7]  Kam-Wah Tsui,et al.  Generalized p-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters , 1989 .

[8]  Zhi-Sheng Ye,et al.  Estimation of Field Reliability Based on Aggregate Lifetime Data , 2017, Technometrics.

[9]  N. F. Zhang,et al.  Interval estimation of process capability index Cpk , 1990 .

[10]  Z. Ye,et al.  Closed-Form Estimators for the Gamma Distribution Derived From Likelihood Equations , 2017 .

[11]  Lora S. Zimmer,et al.  Process Capability Indices in Theory and Practice , 2000, Technometrics.

[12]  Jan Hannig,et al.  Nonparametric generalized fiducial inference for survival functions under censoring , 2017, Biometrika.

[13]  G. Taraldsen,et al.  Discussion of ‘Nonparametric generalized fiducial inference for survival functions under censoring’ , 2019, Biometrika.

[14]  Samaradasa Weerahandi,et al.  Generalized Confidence Intervals , 1993 .

[15]  Jun Yang,et al.  Two Inverse Normalizing Transformation methods for the process capability analysis of non-normal process data , 2016, Comput. Ind. Eng..

[16]  Y. Cui,et al.  Rejoinder: ‘Nonparametric generalized fiducial inference for survival functions under censoring’ , 2019, Biometrika.

[17]  Bing Xing Wang,et al.  Inference on the Gamma Distribution , 2018, Technometrics.

[18]  Zainab Abbasi Ganji Multivariate process incapability vector , 2019, Qual. Reliab. Eng. Int..

[19]  Zhi-Sheng Ye,et al.  Yield-based process capability indices for nonnormal continuous data , 2019, Journal of Quality Technology.

[20]  Jan Hannig,et al.  Generalized fiducial inference for wavelet regression , 2009 .

[21]  H. Iyer,et al.  Fiducial Intervals for Variance Components in an Unbalanced Two-Component Normal Mixed Linear Model , 2008 .

[22]  Robert H. Kushler,et al.  Confidence Bounds for Capability Indices , 1992 .

[23]  W. L. Pearn,et al.  Testing process performance based on capability index Cpk with critical values , 2004, Comput. Ind. Eng..

[24]  Jan Hannig,et al.  Fiducial prediction intervals , 2012 .

[25]  Zhi-Sheng Ye,et al.  A systematic look at the gamma process capability indices , 2018, Eur. J. Oper. Res..

[26]  Jan Hannig,et al.  Fiducial inference on the largest mean of a multivariate normal distribution , 2011, J. Multivar. Anal..

[27]  Wen Lea Pearn,et al.  A PRACTICAL IMPLEMENTATION OF THE PROCESS CAPABILITY INDEX Cpk , 1994 .

[28]  Zhi-Sheng Ye,et al.  Approximate Statistical Limits for a Gamma Distribution , 2017 .

[29]  H. Iyer,et al.  Fiducial Generalized Confidence Intervals , 2006 .

[30]  Damian V. Wandler,et al.  Generalized fiducial confidence intervals for extremes , 2011, Extremes.

[31]  Wen Lea Pearn,et al.  Procedure for supplier selection based on Cpm applied to super twisted nematic liquid crystal display processes , 2004 .

[32]  Todd Iverson,et al.  Generalized fiducial inference , 2014 .

[33]  Chien-Wei Wu,et al.  Assessing process capability based on the lower confidence bound of Cpk for asymmetric tolerances , 2008, Eur. J. Oper. Res..

[34]  Russell A. Boyles,et al.  The Taguchi capability index , 1991 .

[35]  Loon Ching Tang,et al.  A Graphical Approach to Obtaining Confidence Limits of Cpk , 1997 .

[36]  Douglas C. Montgomery,et al.  PROCESS CAPABILITY INDICES AND NON-NORMAL DISTRIBUTIONS , 1996 .

[37]  LeRoy A. Franklin,et al.  Bootstrap confidence interval estimates of cpk: an introduction , 1991 .

[38]  Xingzhong Xu,et al.  Fiducial inference in the pivotal family of distributions , 2006 .

[39]  Chien-Wei Wu,et al.  Capability-based quick switching sampling system for lot disposition , 2017 .

[40]  F. P. Lawrence,et al.  C pk index estimation using data transformation , 1995 .

[41]  Jan Hannig,et al.  Generalized fiducial inference for normal linear mixed models , 2012, 1211.1208.

[42]  Thomas P. Ryan,et al.  Statistical Methods for Quality Improvement: Ryan/Quality Improvement 3E , 2011 .

[43]  Li Xingzhong Fiducial intervals of restricted parameters and their applications , 2005 .

[44]  Correction: Generalized Confidence Intervals , 1994 .

[45]  Jan Hannig,et al.  Generalized Fiducial Inference for Ultrahigh-Dimensional Regression , 2013, 1304.7847.

[46]  Loon Ching Tang,et al.  Computing process capability indices for non‐normal data: a review and comparative study , 1999 .

[47]  Thomas Pyzdek,et al.  PROCESS CAPABILITY ANALYSIS USING PERSONAL COMPUTERS , 1992 .

[48]  Sanku Dey,et al.  Classical and Bayesian inference of Cpy for generalized Lindley distributed quality characteristic , 2019, Qual. Reliab. Eng. Int..

[49]  Randy C. S. Lai,et al.  Generalized Fiducial Inference: A Review and New Results , 2016 .

[50]  Discussion of ‘Nonparametric generalized fiducial inference for survival functions under censoring’ , 2019, Biometrika.

[51]  Cui Yu-jie Generalized Confidence Intervals for Interest Parameters of the Weibull Distribution , 2010 .

[52]  Gary S. Wasserman,et al.  A note on the conservative nature of the tables of lower confidence limits for cpk with a suggested correction , 1992 .

[53]  Wen Lea Pearn,et al.  Process capability assessment for index Cpkbased on bayesian approach , 2005 .

[54]  Zhi-Sheng Ye,et al.  Random Effects Models for Aggregate Lifetime Data , 2017, IEEE Transactions on Reliability.