Base sizes for simple groups and a conjecture of Cameron

Let G be a permutation group on a finite set !. A base for G is a subset B ! ! with pointwise stabilizer in G that is trivial; we write b(G) for the smallest size of a base for G. In this paper we prove that b(G) ! 6 if G is an almost simple group of exceptional Lie type and ! is a primitive faithful G-set. An important consequence of this result, when combined with other recent work, is that b(G) ! 7 for any almost simple group G in a non-standard action, proving a conjecture of Cameron. The proof is probabilistic and uses bounds on fixed point ratios.

[1]  Robert M. Guralnick,et al.  Alternating forms and self-adjoint operators , 2007 .

[2]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[3]  N. Iwahori,et al.  The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic $p\ne 2$ , 1974 .

[4]  Robert A. Wilson,et al.  The Maximal Subgroups of E6(2) and Aut(E6(2)) , 1990 .

[5]  P. B. Kleidman The maximal subgroups of the Chevalley groups G2(q) with q odd , 1988 .

[6]  榎本 彦衛 The characters of the finite chevalley group G2(q), q=3f , 1975 .

[7]  J. P. James Two point stabilisers of partition actions of linear groups , 2006 .

[8]  Peter J. Cameron Groups, Combinatorics & Geometry: Some open problems on permutation groups , 1992 .

[9]  J. P. James Partition Actions of Symmetric Groups and Regular Bipartite Graphs , 2006 .

[10]  N. Iwahori,et al.  The conjugacy classes of the finite Ree groups of type$(F_4)$ , 1975 .

[11]  R. Lawther,et al.  Unipotent classes in maximal subgroups of exceptional algebraic groups , 2009 .

[12]  Gary M. Seitz,et al.  Fixed point ratios in actions of finite exceptional groups of lie type. , 2002 .

[13]  Timothy C. Burness Fixed point spaces in actions of classical algebraic groups , 2004 .

[14]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, III , 2007 .

[15]  M. Liebeck,et al.  Character Degrees and Random Walks in Finite Groups of Lie Type , 2005 .

[16]  Aner Shalev,et al.  Simple groups, permutation groups, and probability , 1999 .

[17]  Bomshik Chang,et al.  The conjugate classes of Chevalley groups of type (G2) , 1968 .

[18]  T. Shoji Green functions of reductive groups over a finite field , 1987 .

[19]  Hikoe Enomoto,et al.  The characters of G 2 (2 n ) , 1986 .

[20]  Michael Aschbacher,et al.  Corrections to “Involutions in Chevalley groups over fields of even order” , 1976, Nagoya Mathematical Journal.

[21]  Timothy C. Burness,et al.  Base sizes for sporadic simple groups , 2010 .

[22]  Ákos Seress,et al.  Bases for Primitive Permutation Groups and a Conjecture of Babai , 1998 .

[23]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[24]  R. Carter THE SUBGROUP STRUCTURE OF THE FINITE CLASSICAL GROUPS (London Mathematical Society Lecture Note Series 129) , 1991 .

[25]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[26]  H. Enomoto The conjugacy classes of Chevalley groups of type ($G_2$) over finite fields of characteristic 2 or 3 , 1970 .

[27]  Gary M. Seitz,et al.  On the subgroup structure of exceptional groups of Lie type , 1998 .

[28]  H. Weyl Permutation Groups , 2022 .

[29]  Kenzo Mizuno The Conjugate Classes of Unipotent Elements of the Chevalley Groups $E_7$ and $E_8$ , 1980 .

[30]  The Classification of the Finite Simple Groups, Number 6 , 2004 .

[31]  Abhinav Shrestha CLASSIFICATION OF FINITE SIMPLE GROUPS , 2010 .

[32]  Endre Süli,et al.  Foundations of Computational Mathematics, Santander 2005 (London Mathematical Society Lecture Note Series) , 2006 .

[33]  G. Michler,et al.  Character table and blocks of finite simple triality groups , 1987 .

[34]  M. Liebeck,et al.  Maximal subgroups of exceptional groups of Lie type, finite and algebraic , 1990 .

[35]  Gary M. Seitz,et al.  On finite subgroups of exceptional algebraic groups , 1999 .

[36]  I. Janiszczak,et al.  The semisimple conjugacy classes of finite groups of lie type E6 and E7 , 1993 .

[37]  Gunter Malle,et al.  The maximal subgroups of 2F4(q2) , 1991 .

[38]  Gary M. Seitz,et al.  Fixed point spaces in actions of exceptional algebraic groups , 2002 .

[39]  Timothy C. Burness On base sizes for actions of finite classical groups , 2007 .

[40]  N. Spaltenstein,et al.  Caractères unipotents de $${}^3D_4 (\mathbb{F}_q )$$ , 1982 .

[41]  Ernest E. Shult,et al.  On a class of doubly transitive groups , 1972 .

[42]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .

[43]  T. Shoji On the green polynomials of a chevalley group of type f4 , 1982 .

[44]  B. Cooperstein Maximal subgroups of G2(2n) , 1981 .

[45]  Ross Lawther,et al.  Correction to 'Jordan block sizes of unipotent elements in exceptional algebraic groups' , 1998, Communications in Algebra.

[46]  Arjeh M. Cohen,et al.  The Local Maximal Subgroups of Exceptional Groups of Lie Type, Finite and Algebraic , 1992 .

[47]  George Lusztig,et al.  Character sheaves, V , 1985 .

[48]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .

[49]  K. Pommerening U¨ber die unipotenten Klassen reduktiver Gruppen II , 1977 .

[50]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, I , 2006 .

[51]  Meinolf Geck,et al.  Finite groups of Lie type , 1985 .

[52]  G. Malle Green functions for groups of type E 6 and F 4 in charateristics 2 , 1993 .

[53]  M. Liebeck,et al.  Reductive subgroups of exceptional algebraic groups , 1996 .

[54]  Peter J. Cameron,et al.  Random Permutations: Some Group-Theoretic Aspects , 1993, Comb. Probab. Comput..

[55]  M. Graber Group Theory: 7 , 1905 .

[56]  T. A. Springer,et al.  Seminar on Algebraic Groups and Related Finite Groups , 1970 .

[57]  Gary M. Seitz,et al.  SUBGROUPS OF MAXIMAL RANK IN FINITE EXCEPTIONAL GROUPS OF LIE TYPE , 1992 .

[58]  Aner Shalev,et al.  The probability of generating a finite simple group , 1995 .

[59]  M. Liebeck,et al.  Maximal Subgroups of Large Rank in Exceptional Groups of Lie Type , 2005 .

[60]  Gary M. Seitz,et al.  The maximal subgroups of positive dimension in exceptional algebraic groups , 2004 .

[61]  Harold N. Ward,et al.  On Ree’s series of simple groups , 1966 .

[62]  P. Fleischmann,et al.  The semisimple conjugacy classes and the generic class number of the finite simple groups of lie type E8 , 1994 .

[63]  Toshiaki Shoji,et al.  Character sheaves and almost characters of reductive groups, II , 1995 .

[64]  G. Lusztig Green functions and character sheaves , 1990 .

[65]  P. B. Kleidman,et al.  The maximal subgroups of the Steinberg triality groups 3D4(q) and of their automorphism groups , 1988 .

[66]  W. M. Beynon,et al.  Green functions of finite Chevalley groups of type En (n = 6, 7, 8) , 1984 .

[67]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[68]  H. Enomoto The characters of the finite Chevalley group G 2 ( q ), q =3 f , 1976 .