Stability Analysis of Unconstrained Receding Horizon Control Schemes

[1]  Shinji Hara,et al.  Robust control system design for sampled-data feedback systems , 1992 .

[2]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[3]  Jürgen Ackermann,et al.  Sampled-Data Control Systems , 1985 .

[4]  Frank Allgöwer,et al.  Unconstrained model predictive control and suboptimality estimates for nonlinear continuous-time systems , 2012, Autom..

[5]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[6]  J. Shamma,et al.  Linear nonquadratic optimal control , 1997, IEEE Trans. Autom. Control..

[7]  Lars Grüne,et al.  On the Infinite Horizon Performance of Receding Horizon Controllers , 2008, IEEE Transactions on Automatic Control.

[8]  H. Piaggio Mathematical Analysis , 1955, Nature.

[9]  Pontus Giselsson Adaptive Nonlinear Model Predictive Control with suboptimality and stability guarantees , 2010, 49th IEEE Conference on Decision and Control (CDC).

[10]  Dragan Nesic,et al.  Stability of Wireless and Wireline Networked Control Systems , 2007, IEEE Transactions on Automatic Control.

[11]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[12]  Frank Allgöwer,et al.  Unconstrained model predictive control and suboptimality estimates for nonlinear time-delay systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[13]  John Hauser,et al.  On the stability of receding horizon control with a general terminal cost , 2005, IEEE Transactions on Automatic Control.

[14]  Karl Worthmann,et al.  Receding horizon optimal control for the wave equation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[15]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[16]  T. Alamo,et al.  Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets , 2006, Autom..

[17]  Alberto Bemporad,et al.  Robustness in Identification and Control , 1999 .

[18]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[19]  Martin Grötschel,et al.  Production factor mathematics , 2010 .

[20]  Eduardo F. Camacho,et al.  Introduction to Model Based Predictive Control , 1999 .

[21]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[22]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[23]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[24]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[25]  Michael Hinze Instantaneous Closed Loop Control of the Navier-Stokes System , 2005, SIAM J. Control. Optim..

[26]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[27]  Andrew R. Teel,et al.  Model predictive control: for want of a local control Lyapunov function, all is not lost , 2005, IEEE Transactions on Automatic Control.

[28]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[29]  Jürgen Pannek,et al.  Receding Horizon Control: A Suboptimality-based Approach , 2009 .

[30]  A. Choudary,et al.  Partial Differential Equations An Introduction , 2010, 1004.2134.

[31]  Stefan Volkwein,et al.  Analysis of instantaneous control for the Burgers equation , 2002 .

[32]  Ole A. Nielsen An Introduction to Integration and Measure Theory , 1997 .

[33]  K. R. Padiyar,et al.  ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY , 1990 .

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[35]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[36]  Frank Allgöwer,et al.  Assessment and Future Directions of Nonlinear Model Predictive Control , 2007 .

[37]  Hong Ye,et al.  Scheduling of networked control systems , 2001 .

[38]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[39]  Günter Leugering,et al.  Lp-Optimal Boundary Control for the Wave Equation , 2005, SIAM J. Control. Optim..

[40]  Karl Worthmann,et al.  Performance of NMPC Schemes without Stabilizing Terminal Constraints , 2010 .

[41]  Jürgen Pannek,et al.  A prediction based control scheme for networked systems with delays and packet dropouts , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[42]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[43]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[44]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[45]  Jürgen Pannek,et al.  Analysis of unconstrained nonlinear MPC schemes with time varying control horizon , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[46]  J. Warga Optimal Control of Ordinary Differential Equations , 1972 .

[47]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[48]  M. Schechter Principles of Functional Analysis , 1971 .

[49]  Olle Ingemar Elgerd,et al.  Control systems theory , 1967 .

[50]  L. Grüne Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization , 2002 .

[51]  Karl Worthmann,et al.  Instantaneous Control of the linear wave equation , 2010 .

[52]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[53]  Jürgen Pannek,et al.  A networked unconstrained nonlinear MPC scheme , 2009, 2009 European Control Conference (ECC).

[54]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[55]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[56]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[57]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[58]  Karl Worthmann,et al.  A Distributed NMPC Scheme without Stabilizing Terminal Constraints , 2012 .

[59]  h.c. Gottfried Köthe Topological Vector Spaces II , 1979 .

[60]  Art Lew,et al.  Dynamic Programming: A Computational Tool , 2006 .

[61]  Bo Lincoln,et al.  Relaxing dynamic programming , 2006, IEEE Transactions on Automatic Control.

[62]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[63]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[64]  Ding Bao-cang,et al.  Modern Predictive Control , 2009 .

[65]  Wolfgang Kliemann,et al.  The dynamics of control , 2000 .

[66]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[67]  E. Hille,et al.  Lectures on ordinary differential equations , 1968 .

[68]  Akira Sano,et al.  Stability analysis of multirate sampled-data control systems , 1994 .

[69]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[70]  Romeo Ortega,et al.  An energy-shaping approach to the design of excitation control of synchronous generators , 2003, Autom..

[71]  M. Muresan A concrete approach to classical analysis , 2009 .

[72]  Gyan C. Agarwal,et al.  Linear Control Systems , 2001 .

[73]  Lars Grüne,et al.  Subdivision Techniques for the Computation of Domains of Attractions and Reachable Sets , 2001 .

[74]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[75]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[76]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[77]  Frank Allgöwer,et al.  Nonlinear Model Predictive Control , 2007 .

[78]  James A. Primbs,et al.  Feasibility and stability of constrained finite receding horizon control , 2000, Autom..

[79]  K. Kunisch,et al.  Receding horizon optimal control for infinite dimensional systems , 2002 .

[80]  Lars Grüne,et al.  Analysis and Design of Unconstrained Nonlinear MPC Schemes for Finite and Infinite Dimensional Systems , 2009, SIAM J. Control. Optim..

[81]  C. Chicone Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.

[82]  J. P. Lasalle The stability and control of discrete processes , 1986 .

[83]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear discrete-time systems , 2007 .

[84]  J. Schiff The Laplace Transform: Theory and Applications , 1999 .

[85]  L. Weiss Introduction to the mathematical theory of control processes, Vol. I - Linear equations and quadratic criteria , 1970 .

[86]  Mashe Sniedovich,et al.  Dynamic Programming , 1991 .

[87]  Andrew R. Teel,et al.  Weak Converse Lyapunov Theorems and Control-Lyapunov Functions , 2003, SIAM J. Control. Optim..

[88]  M. S. Gelormino,et al.  Model predictive control of multi-rate sampled-data systems: a state-space approach , 1992 .

[89]  Jürgen Pannek,et al.  Practical NMPC suboptimality estimates along trajectories , 2009, Syst. Control. Lett..

[90]  Lars Gr,et al.  Mathematische Kontrolltheorie II: Nichtlineare Systeme , 2006 .

[91]  Donal O'Donovan,et al.  Predictive Functional Control , 2011 .

[92]  Karl Worthmann,et al.  MPC: implications of a growth condition on exponentially controllable systems , 2010 .

[93]  A. Rantzer Relaxed dynamic programming in switching systems , 2006 .

[94]  Jürgen Pannek,et al.  Reducing the Prediction Horizon in NMPC: An Algorithm Based Approach , 2011, ArXiv.

[95]  Basil Kouvaritakis,et al.  Nonlinear predictive control : theory and practice , 2001 .

[96]  Rolf Findeisen,et al.  Nonlinear model predictive control : a sampled data feedback perspective , 2005 .

[97]  Lars Grüne,et al.  Analysis of unconstrained NMPC schemes with incomplete optimization , 2010 .

[98]  Jane Cronin Ordinary differential equations : introduction and qualitative theory , 2008 .

[99]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[100]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[101]  Dragan Nesic,et al.  A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models , 2004, IEEE Transactions on Automatic Control.

[102]  J. L. Massera On Liapounoff's Conditions of Stability , 1949 .

[103]  S. E. Tuna,et al.  Shorter horizons for model predictive control , 2006, 2006 American Control Conference.

[104]  S. Lang Calculus of Several Variables , 1973 .

[105]  James A. Primbs,et al.  Receding horizon quadratic optimal control: Performance bounds for a finite horizon strategy , 1997, 1997 European Control Conference (ECC).

[106]  Lars Grne,et al.  Nonlinear Model Predictive Control: Theory and Algorithms , 2011 .

[107]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[108]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[109]  S. Levy,et al.  Elements of functional analysis , 1970 .

[110]  Frank Allgöwer,et al.  Unconstrained Nonlinear Model Predictive Control and Suboptimality Estimates for Continuous-Time Systems , 2011 .

[111]  R. H. Cannon,et al.  Dynamics of Physical Systems , 1967 .

[112]  F. Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997 .