Finding the best not the most: regularized loss minimization subgraph selection for graph classification

[1]  Jia Wu,et al.  CogBoost: Boosting for Fast Cost-Sensitive Graph Classification , 2015, IEEE Transactions on Knowledge and Data Engineering.

[2]  Chengqi Zhang,et al.  Graph Ensemble Boosting for Imbalanced Noisy Graph Stream Classification , 2015, IEEE Transactions on Cybernetics.

[3]  Zhihua Cai,et al.  Boosting for Multi-Graph Classification , 2015, IEEE Transactions on Cybernetics.

[4]  Edwin R. Hancock,et al.  A quantum Jensen-Shannon graph kernel for unattributed graphs , 2015, Pattern Recognit..

[5]  Chengqi Zhang,et al.  Multi-graph-view Learning for Graph Classification , 2014, 2014 IEEE International Conference on Data Mining.

[6]  Philip S. Yu,et al.  Bag Constrained Structure Pattern Mining for Multi-Graph Classification , 2014, IEEE Transactions on Knowledge and Data Engineering.

[7]  Ivor W. Tsang,et al.  Towards ultrahigh dimensional feature selection for big data , 2012, J. Mach. Learn. Res..

[8]  José Eladio Medina-Pagola,et al.  A new proposal for graph-based image classification using frequent approximate subgraphs , 2014, Pattern Recognit..

[9]  Lei Wang,et al.  Global and Local Structure Preservation for Feature Selection , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Chengqi Zhang,et al.  Multi-Graph Learning with Positive and Unlabeled Bags , 2014, SDM.

[11]  Shirui Pan,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Graph Classification with Imbalanced Class Distributions and Noise ∗ , 2022 .

[12]  Masayuki Karasuyama,et al.  Multiple Graph Label Propagation by Sparse Integration , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Philip S. Yu,et al.  Graph stream classification using labeled and unlabeled graphs , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[14]  William R. Gray Roncal,et al.  Graph Classification Using Signal-Subgraphs: Applications in Statistical Connectomics , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Hong Cheng,et al.  Graph classification: a diversified discriminative feature selection approach , 2012, CIKM.

[16]  Hiroshi Mamitsuka,et al.  Latent Feature Kernels for Link Prediction on Sparse Graphs , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[17]  Roman Garnett,et al.  Efficient Graph Kernels by Randomization , 2012, ECML/PKDD.

[18]  Klaus Obermayer,et al.  Learning in Riemannian Orbifolds , 2012, ArXiv.

[19]  Marco Saerens,et al.  Semi-supervised classification and betweenness computation on large, sparse, directed graphs , 2011, Pattern Recognit..

[20]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[21]  Philip S. Yu,et al.  Multi-label Feature Selection for Graph Classification , 2010, 2010 IEEE International Conference on Data Mining.

[22]  Philip S. Yu,et al.  Semi-supervised feature selection for graph classification , 2010, KDD.

[23]  Hongliang Fei,et al.  Boosting with structure information in the functional space: an application to graph classification , 2010, KDD.

[24]  Xindong Wu,et al.  Manifold elastic net: a unified framework for sparse dimension reduction , 2010, Data Mining and Knowledge Discovery.

[25]  Wei Wang,et al.  GAIA: graph classification using evolutionary computation , 2010, SIGMOD Conference.

[26]  Jiawei Han,et al.  Discriminative Frequent Pattern-Based Graph Classification , 2010, Link Mining.

[27]  Philip S. Yu,et al.  Near-optimal Supervised Feature Selection among Frequent Subgraphs , 2009, SDM.

[28]  Kaspar Riesen,et al.  Graph Classification by Means of Lipschitz Embedding , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  Klaus Obermayer,et al.  Structure Spaces , 2009, J. Mach. Learn. Res..

[30]  Wei Wang,et al.  Graph classification based on pattern co-occurrence , 2009, CIKM.

[31]  Ambuj K. Singh,et al.  GraphSig: A Scalable Approach to Mining Significant Subgraphs in Large Graph Databases , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[32]  Sebastian Nowozin,et al.  gBoost: a mathematical programming approach to graph classification and regression , 2009, Machine Learning.

[33]  Philip S. Yu,et al.  Mining significant graph patterns by leap search , 2008, SIGMOD Conference.

[34]  George Michailidis,et al.  Graph-Based Semisupervised Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[36]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[37]  Yuji Matsumoto,et al.  An Application of Boosting to Graph Classification , 2004, NIPS.

[38]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[39]  H. Kashima,et al.  Kernels for graphs , 2004 .

[40]  G. Karypis,et al.  Frequent sub-structure-based approaches for classifying chemical compounds , 2005, Third IEEE International Conference on Data Mining.

[41]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[42]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  Fritz Wysotzki,et al.  Learning Relational Concepts with Decision Trees , 1996, ICML.

[45]  Joachim Selbig,et al.  Concept Learning by Structured Examples - An Algebraic Approach , 1981, IJCAI.