The multiple facets of the canonical direct unit implicational basis

The notion of dependencies between ''attributes'' arises in many areas such as relational databases, data analysis, data-mining, formal concept analysis, knowledge structures .... Formalization of dependencies leads to the notion of so-called full implicational systems (or full family of functional dependencies) which is in one-to-one correspondence with the other significant notions of closure operator and of closure system. An efficient generation of a full implicational system (or a closure system) can be performed from equivalent implicational systems and in particular from the bases for such systems, for example, the so-called canonical basis. This paper shows the equality between five other bases originating from different works and satisfying various properties (in particular they are unit implicational systems). The three main properties of this unique basis are the directness, canonical and minimal properties, whence the name canonical direct unit implicational basis given to this unit implicational system. The paper also gives a nice characterization of this canonical basis and makes precise its link with the prime implicants of the Horn function associated to a closure operator. It concludes that it is necessary to compare more closely related works made independently, and with a different terminology, in order to take advantage of the really new results in these works.

[1]  J. C. C. McKinsey,et al.  The decision problem for some classes of sentences without quantifiers , 1943, Journal of Symbolic Logic.

[2]  A. Tarski Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I , 1930 .

[3]  Rudolf Wille,et al.  Knowledge Spaces and Formal Concept Analysis , 1996 .

[4]  Dirk Siefkes,et al.  Finite Automata, Their Algebras and Grammars , 1990 .

[5]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[6]  Elias C. Stavropoulos,et al.  Monotone Boolean dualization is in co-NP[log2n] , 2003, Inf. Process. Lett..

[7]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[8]  B. Monjardet Arrowian characterizations of latticial federation consensus functions , 1990 .

[9]  Bernard Monjardet,et al.  The presence of lattice theory in discrete problems of mathematical social sciences. Why , 2003, Math. Soc. Sci..

[10]  Karell Bertet,et al.  Efficient Algorithms on the Family Associated to an Implicational System , 2004, Discret. Math. Theor. Comput. Sci..

[11]  Bruno Leclerc,et al.  Ensembles ordonnés finis : concepts, résultats, usages , 2007 .

[12]  Bernhard Ganter,et al.  Attribute Exploration with Background Knowledge , 1999, Theor. Comput. Sci..

[13]  Rina Dechter,et al.  Structure Identification in Relational Data , 1992, Artif. Intell..

[14]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[15]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[16]  Ronald Fagin,et al.  Functional Dependencies in a Relational Data Base and Propositional Logic , 1977, IBM J. Res. Dev..

[17]  Frithjof Dau,et al.  From Formal Concept Analysis to Contextual Logic , 2005, Formal Concept Analysis.

[18]  M. Wild A Theory of Finite Closure Spaces Based on Implications , 1994 .

[19]  E. H. Moore,et al.  Introduction to a form of general analysis , 2012 .

[20]  Bernard Monjardet,et al.  On a dependence relation in finite lattices , 1997, Discret. Math..

[21]  Toshihide Ibaraki,et al.  Functional Dependencies in Horn Theories , 1999, Artif. Intell..

[22]  Heikki Mannila,et al.  Design of Relational Databases , 1992 .

[23]  Karell Bertet,et al.  Efficient Algorithms on the Moore Family Associated to an Implicational System , 2004 .

[24]  K. Bertet,et al.  Some Algorithmical Aspects Using the Canonical Direct Implicationnal Basis , 2010 .

[25]  Claude Flament,et al.  L'analyse booléenne de questionnaires , 1976 .

[26]  Eric SanJuan,et al.  Generalized domination in closure systems , 2003, Discret. Appl. Math..

[27]  Vincent Duquenne,et al.  Attribute-incremental construction of the canonical implication basis , 2007, Annals of Mathematics and Artificial Intelligence.

[28]  F. E. A Relational Model of Data Large Shared Data Banks , 2000 .

[29]  Vincent Duquenne,et al.  Latticial Structures in Data Analysis , 1999, Theor. Comput. Sci..

[30]  Norman M. Martin,et al.  Closure Spaces and Logic , 1996 .

[31]  Alfred Horn,et al.  On sentences which are true of direct unions of algebras , 1951, Journal of Symbolic Logic.

[32]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[33]  Ayzerman,et al.  Theory of choice , 1995 .

[34]  Yves Bastide,et al.  Computing Proper Implications , 2001 .

[35]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[36]  Bernard Monjardet,et al.  Erratum to: The lattice of closure systems, closure operators and implicational systems on a finite set: a survey[Discrete Applied Mathematics 127(2) (2003) 241–269] , 2005 .

[37]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[38]  P. Hertz Über Axiomensysteme für beliebige Satzsysteme , 1929 .

[39]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[40]  Peter L. Hammer,et al.  Horn Functions and Their DNFs , 1992, Inf. Process. Lett..

[41]  Bernhard Ganter,et al.  Contextual Attribute Logic , 1999, ICCS.

[42]  Wilfrid Hodges,et al.  Logical features of Horn Clauses , 1993 .

[43]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[44]  János Demetrovics,et al.  Databases, closure operations and sperner families , 1994 .

[45]  Karell Bertet,et al.  Graphic Recognition: The Concept Lattice Approach , 2003, GREC.

[46]  Garrett Birkhoff,et al.  Representations of lattices by sets , 1948 .

[47]  Susanne Motameny,et al.  Horn representation of a concept lattice , 2009, CLA.

[48]  J. Ogier,et al.  On the joint use of two implicational bases , 2007 .

[49]  Gio Wiederhold,et al.  Databases , 1984, Computer.

[50]  Hans-Hermann Bock,et al.  Data Analysis and Information Systems , 1996 .

[51]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[52]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[53]  Jean-Claude Falmagne,et al.  Knowledge spaces , 1998 .

[54]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[55]  Lawrence J. Henschen,et al.  Semantic Resolution for Horn Sets , 1975, IEEE Transactions on Computers.

[56]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[57]  Marcel Wild,et al.  Computations with Finite Closure Systems and Implications , 1995, COCOON.

[58]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[59]  Bernard Monjardet,et al.  The Lattices of Closure Systems, Closure Operators, and Implicational Systems on a Finite Set: A Survey , 2003, Discret. Appl. Math..

[60]  Julius Richard Büchi,et al.  Finite automata, their algebras and grammars - towards a theory of formal expressions , 1989 .

[61]  Bernard Monjardet,et al.  The duality between the anti-exchange closure operators and the path independent choice operators on a finite set , 2001, Math. Soc. Sci..

[62]  D. Scott Completeness and axiomatizability in many-valued logic , 1974 .