SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. II. THE MOST LUMINOUS STANDARD CANDLES IN THE UNIVERSE

This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

[1]  C. M. Gaskell,et al.  Line variations in quasars and Seyfert galaxies , 1986 .

[2]  S. Hönig,et al.  DUST REVERBERATION MAPPING IN THE ERA OF BIG OPTICAL SURVEYS AND ITS COSMOLOGICAL APPLICATION , 2014, 1401.2999.

[3]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[4]  S. Mineshige,et al.  The Hot Disk Corona and Magnetic Turbulence in Radio-quiet Active Galactic Nuclei: Observational Constraints , 2004, astro-ph/0407160.

[5]  D. N. Okhmat,et al.  REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES , 2012, 1206.6523.

[6]  W. M. Wood-Vasey,et al.  Distance Probes of Dark Energy , 2015 .

[7]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[8]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[9]  B. Peterson,et al.  Observational Requirements for High‐Fidelity Reverberation Mapping , 2002, astro-ph/0201182.

[10]  M. Mori,et al.  Does the Slim-Disk Model Correctly Consider Photon-trapping Effects? , 2002, astro-ph/0203425.

[11]  M. Mouchet,et al.  Are quasars accreting at super-Eddington rates? , 2002, astro-ph/0203439.

[12]  H. Lee,et al.  BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z ∼ 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD , 2012, 1211.0069.

[13]  W. Bian,et al.  A note on black hole masses estimated by the second moment in narrow-line Seyfert 1 Galaxies , 2008, 0808.0121.

[14]  D. Valls-Gabaud,et al.  Super-Eddington accreting massive black holes as long-lived cosmological standards. , 2013, Physical review letters.

[15]  F. Yuan,et al.  TWO-DIMENSIONAL NUMERICAL SIMULATIONS OF SUPERCRITICAL ACCRETION FLOWS REVISITED , 2013, 1306.1871.

[16]  N. Shaviv,et al.  The super-Eddington nature of supermassive stars , 2012, 1203.4372.

[17]  Quasar tomography: unification of echo mapping and photoionization models , 2002, astro-ph/0210539.

[18]  J. Fukue Basic Properties of Supercritical Accretion Disks , 2000 .

[19]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[20]  T. Treu,et al.  GEOMETRIC AND DYNAMICAL MODELS OF REVERBERATION MAPPING DATA , 2011, 1101.4952.

[21]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[22]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[23]  R. Narayan,et al.  Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes , 2013, 1307.1143.

[24]  A. Wandel,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999 .

[25]  Ramesh Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994 .

[26]  B. Trakhtenbrot,et al.  Black Hole Growth to z = 2 - I: Improved Virial Methods for Measuring M_BH and L/L_Edd , 2012, 1209.1096.

[27]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[28]  B. Paczyński,et al.  A Model of a Thin Accretion Disk around a Black Hole , 1981 .

[29]  S. Bianchi A new cosmological distance measure using AGN X-ray variability , 2014 .

[30]  D. Grupe,et al.  SUPERMASSIVE BLACK HOLES, PSEUDOBULGES, AND THE NARROW-LINE SEYFERT 1 GALAXIES , 2011, 1102.0537.

[31]  Yue Shen,et al.  THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS–LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS , 2012, 1209.0477.

[32]  C. Kochanek,et al.  C iv LINE-WIDTH ANOMALIES: THE PERILS OF LOW SIGNAL-TO-NOISE SPECTRA , 2013, 1303.3889.

[33]  P. Madau Thick accretion disks around black holes and the UV/soft X-ray excess in quasars , 1987 .

[34]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: Fe ii REVERBERATION FROM THE OUTER BROAD-LINE REGION , 2013, 1304.4643.

[35]  Astronomy,et al.  THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs , 2008, 0812.2283.

[36]  COSMOLOGICAL IMPLICATIONS FROM OBSERVATIONS OF TYPE IA SUPERNOVAE , 2001 .

[37]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[38]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[39]  P. Teerikorpi On Öpik’s distance evaluation method in a cosmological context , 2011 .

[40]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[41]  Michael J. Fromerth,et al.  Determination of the Central Mass in Active Galactic Nuclei Using Cross-Correlation Lags and Velocity Dispersions , 2000, astro-ph/0307194.

[42]  M. Malkan,et al.  The Observational Appearance of Slim Accretion Disks , 1995, astro-ph/9509037.

[43]  P. Veron,et al.  A spectrophotometric atlas of narrow-line seyfert 1 galaxies , 2001 .

[44]  P. Marziani,et al.  Highly accreting quasars: sample definition and possible cosmological implications , 2014, 1405.2727.

[45]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[46]  Jian-Min Wang,et al.  Self-similar Solution of Optically Thick Advection-dominated Flows , 1999 .

[47]  S. Mineshige,et al.  Slim Disk: Viscosity Prescriptions and Observational Implications , 2001, astro-ph/0109019.

[48]  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[49]  H. Netzer,et al.  Massive thin accretion discs – I. Calculated spectra , 1989 .

[50]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[51]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[52]  Madrid,et al.  X-ray spectral variability in PG 1535+547: the changing look of a "soft X-ray weak" AGN , 2008, 0802.2936.

[53]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[54]  M. M. De Robertis,et al.  The Central Engines in Narrow-Line Seyfert 1 Galaxies , 2004 .

[55]  A. Marconi,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[56]  Yiqing Liu,et al.  THE CORRELATIONS BETWEEN OPTICAL VARIABILITY AND PHYSICAL PARAMETERS OF QUASARS IN SDSS STRIPE 82 , 2012, Proceedings of the International Astronomical Union.

[57]  A. Marconi,et al.  The role of secular evolution in the black hole growth of narrow-line Seyfert 1 galaxies , 2011, 1104.5023.

[58]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[59]  B. Trakhtenbrot,et al.  Bolometric luminosity black hole growth time and slim accretion discs in active galactic nuclei , 2013, 1311.4215.

[60]  H. Netzer The Physics and Evolution of Active Galactic Nuclei , 2013 .

[61]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[62]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[63]  B. Peterson,et al.  Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies , 1998, astro-ph/9802104.

[64]  P. Marziani,et al.  Quasars and their emission lines as cosmological probes , 2013, 1310.3143.

[65]  D. Osterbrock,et al.  The spectra of narrow-line Seyfert 1 galaxies , 1985 .

[66]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[67]  Hongyan Zhou,et al.  A COMPARATIVE STUDY OF OPTICAL/ULTRAVIOLET VARIABILITY OF NARROW-LINE SEYFERT 1 AND BROAD-LINE SEYFERT 1 ACTIVE GALACTIC NUCLEI , 2013, 1301.4739.

[68]  E. Szuszkiewicz,et al.  Emergent Spectra from Slim Accretion Disks in Active Galactic Nuclei , 1999 .

[69]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[70]  K. Nomoto,et al.  THE ROLE OF TYPE Ia SUPERNOVAE IN CHEMICAL EVOLUTION. I. LIFETIME OF TYPE Ia SUPERNOVAE AND METALLICITY EFFECT , 2007, 0801.0215.

[71]  A. Schwarzenberg-Czerny,et al.  Towards equation of state of dark energy from quasar monitoring: Reverberation strategy , 2012, 1212.0472.

[72]  F. Melia The high-z quasar Hubble Diagram , 2013, 1312.5798.

[73]  B. Peterson,et al.  The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes , 1987 .

[74]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2000, astro-ph/0507614.

[75]  E. Branchini,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY , 2014, 1404.2607.

[76]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[77]  Margarita Karovska,et al.  Quasar Parallax: A Method for Determining Direct Geometrical Distances to Quasars , 2002 .

[78]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[79]  A. Sa̧dowski,et al.  Relativistic slim disks with vertical structure , 2010, 1006.4309.

[80]  Super‐Eddington accretion discs around Kerr black holes , 1998, astro-ph/9802129.

[81]  Fang Wang,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. I. FIRST RESULTS FROM A NEW REVERBERATION MAPPING CAMPAIGN , 2013, 1310.4107.

[82]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[83]  L. Ho,et al.  A BAYESIAN APPROACH TO ESTIMATE THE SIZE AND STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI USING REVERBERATION MAPPING DATA , 2013, 1310.3907.

[84]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[85]  T. Shimura,et al.  Radiation spectrum from relativistic slim accretion discs: an effect of photon trapping , 2003 .

[86]  T. Davis,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI , 2011, 1109.4632.

[87]  D. Riechers,et al.  DO QUIESCENT AND ACTIVE GALAXIES HAVE DIFFERENT MBH–σ* RELATIONS? , 2013, 1305.2946.

[88]  S. Mineshige,et al.  Slim-Disk model for Soft X-Ray Excess and Variability of Narrow-Line Seyfert 1 Galaxies , 2000, astro-ph/0003017.

[89]  Jian-Min Wang Hagai Netzer Extreme slim accretion disks and narrow line Seyfert 1 galaxies: The nature of the soft X-ray hump , 2002, astro-ph/0210361.

[90]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[91]  Y. Yoshii,et al.  A NEW METHOD FOR MEASURING EXTRAGALACTIC DISTANCES , 2014, 1403.1693.