On the use of structural equation models for marketing modeling

We reflect on the role of structural equation modeling (SEM) in marketing modeling and managerial decision making. We discuss some benefits provided by SEM and alert marketing modelers to several recent developments in SEM in three areas: measurement analysis, analysis of cross-sectional data, and analysis of longitudinal data.

[1]  A. Harvey Time series models , 1983 .

[2]  Michael W. Browne,et al.  Structured latent curve models , 1993 .

[3]  William Meredith,et al.  Latent curve analysis , 1990 .

[4]  L B Lave,et al.  Air pollution and human health. , 1977, Science.

[5]  R. Bagozzi Principles of marketing research , 1994 .

[6]  Stephen J. Hoch,et al.  Why Store Brand Penetration Varies by Retailer , 1997 .

[7]  Frank M. Bass,et al.  Empirical Generalizations and Marketing Science: A Personal View , 1995 .

[8]  Bengt Muthén,et al.  General Longitudinal Modeling of Individual Differences in Experimental Designs: A Latent Variable Framework for Analysis and Power Estimation , 1997 .

[9]  John B. Willett,et al.  Using covariance structure analysis to detect correlates and predictors of individual change over time , 1994 .

[10]  Wan,et al.  LISREL analyses of interaction effects in multiple regression , 1996 .

[11]  Donald Hay,et al.  Industrial Economics and Organization: Theory and Evidence , 1991 .

[12]  John R. Hauser,et al.  A Normative Methodology for Modeling Consumer Response to Innovation , 1977, Oper. Res..

[13]  Richard P. Bagozzi,et al.  A Holistic Methodology for Modeling Consumer Response to Innovation , 1983, Oper. Res..

[14]  Jan-Benedict E. M. Steenkamp,et al.  The use of LISREL in validating marketing constructs. , 1991 .

[15]  D. Wittink,et al.  Building Models for Marketing Decisions , 2000 .

[16]  Kenneth A. Bollen,et al.  Air pollution-mortality models: A demonstration of the effects of random measurement error , 1987 .

[17]  J. Jaccard,et al.  LISREL Approaches to Interaction Effects in Multiple Regression , 1998 .

[18]  M. Pesaran,et al.  Estimating Long-Run Relationships From Dynamic Heterogeneous Panels , 1995 .

[19]  Michel Wedel,et al.  Marketing Data, Models and Decisions , 2000 .

[20]  Dominique M. Hanssens,et al.  Time-series models in marketing:: Past, present and future , 2000 .

[21]  Calyampudi Radhakrishna Rao,et al.  Multivariate analysis : future directions 2 , 1993 .

[22]  Robert J. Charlson,et al.  On the generality of correlation of atmospheric aerosol mass concentration and light scatter , 1968 .

[23]  Christian Homburg,et al.  Applications of structural equation modeling in marketing and consumer research: A review , 1996 .

[24]  J. Steenkamp,et al.  Assessing Measurement Invariance in Cross-National Consumer Research , 1998 .

[25]  W. DeSarbo,et al.  Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity , 1997 .

[26]  Hans Baumgartner,et al.  Multi-Group Latent Variable Models for Varying Numbers of Items and Factors with Cross-National and Longitudinal Applications , 1998 .

[27]  Sönke Albers,et al.  Impact of types of functional relationships, decisions, and solutions on the applicability of marketing models , 2000 .

[28]  Berend Wierenga,et al.  BROADENING THE PERSPECTIVE ON MARKETING DECISION MODELS , 2000 .