Simulation of stability using Java application for Pareto design of controllers based on a new multi-objective particle swarm optimization

In this paper, Java programming with applets for internet-based control education of two mechanical systems are presented. First, a new multi-objective optimization method is applied to obtain the Pareto frontiers of some non-commensurable objective functions in the design of linear state feedback controllers for an inverted pendulum and a ball-beam system. Second, the simulations of the problems were developed with Java applets and its results are given. The obtained results and analyses demonstrate that this multi-objective method presented in this paper operates very well in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability.

[1]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[2]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[3]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[4]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[6]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[8]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[9]  Miguel Strefezza,et al.  Multi-objective Pole Placement with Evolutionary Algorithms , 2007, EMO.

[10]  Harvey Gould,et al.  An Introduction to Computer Simulation Methods: Applications to Physical Systems , 2006 .

[11]  Harvey Gould,et al.  An Introduction to Computer Simulation Methods: Applications to Physical Systems (3rd Edition) , 2005 .

[12]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[13]  R. Toscano A simple robust PI/PID controller design via numerical optimization approach , 2004 .

[14]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[15]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[18]  Patrick Chan,et al.  Developing Professional Java Applets , 1996 .

[19]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[20]  Jamie Jaworski Java Developers Guide; With Cdrom , 1996 .

[21]  Yoshikazu Fukuyama,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 2000 .

[22]  Harvey Gould,et al.  An introduction to computer simulation methods , 1988 .

[23]  Jamie Jaworski,et al.  JAVA developer's guide , 1996 .

[24]  S. Galvani,et al.  A particle swarm optimization approach for optimum design of PID controller in linear elevator , 2010, 2010 Conference Proceedings IPEC.

[25]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[28]  Carlos M. Fonseca,et al.  Multiobjective optimal controller design with genetic algorithms , 1994 .

[29]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[30]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[31]  Shang-Jeng Tsai,et al.  An improved multi-objective particle swarm optimizer for multi-objective problems , 2010, Expert Syst. Appl..